IETF (Internet Engineering Task Force)의 CoAP (Constrained Application Protocol) 프로토콜은 작은 용량의 메모리와 저전력 등 제한된 환경에서 센서나 구동체 노드 간에 통신을 지원한다. CoAP 프로토콜은 HTTP와 쉽게 상호 변환할 수 있으며, 사물인터넷(Internet of Thing : IoT)와 M2M (Machine-to-Machine) 환경에서 저전력 센서와 구동체 네트워크를 통한 기반 시설을 감시하거나 관리할 수 있다. IETF CoRE(Constrained RESTful environments) 워킹그룹(Working Group)에서 2010년에 CoAP 프로토콜에 대한 표준화를 시작하여 최근에 RFC(Request for Comments) 7252로 발표한다 [2]. 본 논문에서는 이질적인 운영 환경에서 CoAP 프로토콜을 설계하고 구현하여 상호 호환성을 검증한다. 이를 위해 CoAP 클라이언트에는 윈도우 기반의 CoAP 프로토콜을 실현하고, CoAP 서버에는 리눅스 기반의 CoAP 프로토콜을 구현하여 상호 연동 실험을 실시하여 동작을 확인한다.
A. Joux의 프로토콜을 기반으로 패스워드 기반 인증된 3자 키 교환 프로토콜을 제안하였다. 공유 패스워드를 이용한 대칭 키 암호를 사용하여 A. Joux의 프로토콜이 갖는 인증과 man-in-the-middle attack 문제를 해결하였다. 또한 패스워드를 사용한 대칭 키 암호의 취약점인 오프라인 사전공격에 대한 대책도 제시하였다. 제안된 프로토콜은 인증서 기반 인증과 ID 기반 인증에서 요구되는 신뢰 기관이 필요 없으므로 ad hoc 네트워크와 같이 네트워크 인프라 구축이 어려운 환경에서 유용하게 사용될 수 있다. 제안된 프로토콜은 기존에 발표된 패스워드 인증된 키 교환 프로토콜보다 통신적인 면에서 더 효율적이며 트리기반 그룹 키 프로토콜에 적용될 경우 계산상의 약점을 보상받을 수 있다.
Modbus 프로토콜은 하나의 마스터 제어 유닛에 여러 대의 슬레이브 제어 유닛을 연결할 경우 가장 널리 사용되는 프로토콜이다. 그러나 Modbus 프로토콜에서는 SCU의 상태 값을 읽는 서로 다른 서비스 요청 메시지에 대해 결과 값만을 응답하기 때문에 어떤 전송 메시지에 대한 응답인지 식별할 수 없었다. 따라서 MCU 프로그램 작성 시 하나의 서비스 요청 메시지를 전송하고 이를 처리한 후에 다음 메시지를 전송하도록 프로그램을 작성하였다. 본 논문에서는 위 문제를 해결하기 위해 메시지의 전송 순서를 확인할 수 있는 Index 코드 및 응답한 메시지의 서비스 유형을 판단하기 위한 Service 코드를 추가한 Modbus 응용 프로토콜을 설계하고 이를 제안하였다. 실험 결과, MCU에서 전송한 서비스 요청 메시지에 대한 처리가 완료되지 않은 상태에서 다음 서비스 요청 메시지의 전송이 가능하였으며, 통신 에러 발생 시 에러 검색 알고리즘을 이용해 어떤 종류의 에러가 발생했는지 식별할 수 있었다. 또한, 다중의 동시적인 서비스 요청의 경우에 전송 메시지들의 처리시간이 기존의 Modbus 프로토콜보다 약 66.2% 향상되었다.
본 논문에서는 수중 매체의 특성 중의 하나인 긴 전송 지연을 고려한 수중 모바일 애드 혹 네트워크 기반의 MAC 프로토콜을 제안한다. 특히, 이에 효율적인 3-way handshaking 방식(RTS/CTS/DATA)을 채택하였으며 기존 방식의 문제점인 RTS 메시지와 CTS 메시지 간의 충돌을 회피할 수 있는 방법을 제시함으로써 데이터 전송의 비효율성을 극복할 수 있다. 또한, 본 논문에서 제안하는 MAC 프로토콜은 현재 구현이 가능한 기술을 통하여 수중 모바일 애드 혹 네트워크에서 실질적으로 적용이 가능한 MAC 프로토콜로서, 수중 환경의 여러 특성들을 고려하여 설정한 가변적인 RWT(Request-To-Send Waiting Time)을 통하여 이동 노드의 움직임에 따른 다양한 네트워크의 크기를 반영한다. 마지막으로 실험을 통해 데이터 처리량, 패킷 수신 실패율, 평균 전송 시간, 에너지 소비량, 채널 이용률 측면에서 기존의 MAC 프로토콜과 성능을 비교 및 분석함으로써 그 효율성을 검증한다.
무선 센서 네트워크는 현실로부터 데이터 수집이 가능한 센서가 장착된 노드들이 무선으로 구성된 네트워크이다. 센서 노드들이 무선으로 구성되었기 때문에 배터리와 같은 제한된 전원을 가지게 된다. 센서 노드의 배터리가 모두 소모되어 버리면 해당 노드는 더 이상 사용할 수 없게 되며, 일정 이상의 노드가 죽으면 네트워크는 제 역할을 못하게 된다. 에너지 효율을 높이기 위한 무선 센서 네트워크 프로토콜은 여러 가지가 있으며, 그 중 LEACH Protocol이 대표적이다. LEACH protocol은 클러스터 기반 프로토콜로 센서 공간을 클러스터로 나누어 노드 간 송수신을 한다. 그렇기 때문에 클러스터가 어떻게 구성되었느냐에 따라 에너지의 소모양이 줄어들기도 늘어나기도 한다. 클러스터 선정하는 방법을 Fuzzy를 이용하여 개선한 세 종류 프로토콜과 기존 LEACH Protocol의 네트워크 수명을 비교해보고자 한다.
WiMedia는 다른 WPAN 기술에 비해 빠른 전송률을 제공하지만 전송 범위가 10미터로 제한되어 있어 그 이상의 거리에 존재하는 디바이스와의 통신은 불가능하다. 따라서 본 논문에서는 WiMedia 네트워크에서 제한된 전송 범위를 극복하여 실시간(Real-Time) 데이터를 전송하기 위한 멀티홉 QoS 라우팅 프로토콜을 제안하였다. 제안된 라우팅 프로토콜은 Table-Driven 라우팅 알고리즘과 On-Demand 라우팅 알고리즘이 결합된 하이브리드 형 라우팅 프로토콜로 2홉 이내의 거리에 존재하는 디바이스에 대한 경로는 주기적으로 전송되는 이웃 디바이스의 정보를 수집한 후 Table-Driven 라우팅 알고리즘을 사용하여 생성하며 3홉 이상의 거리에 존재하는 디바이스에 대한 경로는 On-Demand 라우팅 알고리즘을 사용하여 생성한다. 그리고 ns-2 시뮬레이션을 통해 제안된 라우팅 프로토콜과 AODV, 그리고 DSDV간의 성능을 비교하였으며, 그 결과 처리율과 지연시간에 있어 우수한 성능을 보였다.
본 논문에서는 기존 리더 충돌방지 알고리즘인 Channel Monitoring 알고리즘, Pulse Protocol 알고리즘에 대하여 살펴보고, 태그인식시간을 감소시키고, 데이터 처리량, 시스템 효율을 증가 시킬 수 있는 슬롯 점유확률을 이용한 Pulse Protocol 기반의 Hybrid 리더 충돌 방지 알고리즘을 제안한다. 제안하는 알고리즘은 Pulse Protocol 알고리즘의 성능을 향상시키기 위하여 Channel Monitoring 알고리즘에서 사용되고 있는 슬롯의 점유확률 (Occupied Probability)을 이용한다. 즉, 리더들은 랜덤 backoff 시간을 생성한 후, 자신이 사용하게 될 슬롯의 점유확률을 확인하고, 이 슬롯의 점유확률이 0보다 크다면, 새로운 랜덤 backoff 시간을 생성하여 리더간의 충돌을 피한다. 기존 알고리즘들과 제안하는 알고리즘과의 성능을 태그인식시간, 데이터 처리량 및 시스템 효율 등의 성능분석항목들을 통하여 비교 및 분석하여, 제안하는 알고리즘에 의하여 리더의 개수가 증가함에 따라 7% 정도의 태그인식시간 및 데이터 처리량 성능 향상을 확인한다.
MQTT-SN(Message Queuing Telemetry Transport - Sensor Network) 프로토콜은 센서 기반의 IoT(Internet of Things)환경에서 사용되는 메시지 전송 프로토콜이다. 이 MQTT-SN 프로토콜은 메시지 전송 중간에 중개자(Broker)를 둔 발행-구독 모델(Publish-Subscribe Model)로 각 IoT 장치들이 메시지를 전달 할 때 반드시 중개자를 통해 메시지를 주고 받는 모델이다. 하지만 MQTT-SN 프로토콜은 메시지 보안, 상호 인증, 접근 제어, 중개자 보안등을 만족하는 보안 관련된 기능을 제공하고 있지 않다. 이에 따라 최근 다양한 보안 문제가 발생하고 있으며, 보안이 필요한 상황이 대두되고 있다. 본 논문에서는 MQTT-SN의 보안 요구사항을 다시 한번 살펴보고, 이 프로토콜이 적용되는 IoT의 자원이 제한된 환경에서의 제약 조건을 만족하면서 보안을 향상시키는 수정된 프로토콜을 제안한다. 제안 프로토콜은 기존과 다르게, 보안 필드와 인증 서버가 추가되었으며 이를 통해 보안 요구사항을 만족시키도록 한다. 더불어 제안된 프로토콜을 실제 구현 및 테스트하고 에너지 소모 관점에서 제안된 프로토콜이 실제 사용이 가능한지 평가하도록 한다.
In this paper, we present the performance evaluation of the reliable cooperative media access control (RCO-MAC) protocol, which has been proposed in [1] by us in order to enhance system throughput in bad wireless channel environments. The performance of this protocol is evaluated with computer simulation as well as mathematical analysis in this paper. The system throughput, two types of average delays, average channel access delay, and average system delay, which includes the queuing delay in the buffer, are used as performance metrics. In addition, two different traffic models are used for performance evaluation: The saturated traffic model for computing system throughput and average channel access delay, and the exponential data generation model for calculating average system delay. The numerical results show that the RCO-MAC protocol proposed by us provides over 20% more system throughput than the relay distributed coordination function (rDCF) scheme. The numerical results show that the RCO-MAC protocol provides a slightly higher average channel access delay over a greater number of source nodes than the rDCF. This is because a greater number of source nodes provide more opportunities for cooperative request to send (CRTS) frame collisions and because the value of the related retransmission timer is greater in the RCO-MAC protocol than in the rDCF protocol. The numerical results also confirm that the RCO-MAC protocol provides better average system delay over the whole gamut of the number of source nodes than the rDCF protocol.
분산 시스템에서 가용성을 높이고 전체 시스템의 성능을 향상시키기 위해 데이터는 여러 노드에 중복하여 저장된다. 여기서는 전역적 접근제어를 위해서 읽기/쓰기 동작을 수행하는데 필요한 노드의 집합을 정의하는 Quorum 프로토콜이 존재한다. Quorum 프로토콜을 사용하는 대표적인 복제 프로토콜인 Tree Quorum 프로토콜은 트리의 높이가 증가할수록 노드의 수가 기하급수적으로 증가하고, Grid 프로토콜은 노드에 장애가 발생하지 않아도 언제나 같은 읽기/쓰기 비용을 갖는다는 단점을 갖고 있다. 따라서, 본 논문에서는 기존 프로토콜의 장점을 가지면서 단점을 해결할 수 있는 새로운 하이브리드 프로토콜을 제안한다. 제안된 하이브리드 프로토콜은 전체적으로는 트리 구조를 가지면서 각 레벨에서는 그리드의 열과 같은 구조를 가짐으로써 노드에 장애가 없을 때에는 Tree Quorum 프로토콜과 같이 적은 동작 비용을 요구하며, 노드에 장애가 존재할 경우에도 기존 프로토콜에 비해 상대적으로 적은 동자 비용과 높은 가용성을 보인다. 그러므로 높은 데이터 가용성이 요구되는 서바이벌 스토리지 시스템에 효율적으로 적용 가능하다. 본 논문에서는 수학적 모델링을 통하여 제안된 프로토콜의 비용과 가용성을 평가하고, 시뮬레이션을 통해 응답시간과 처리율을 기존의 Tree quorum프로토콜과 비교한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.