• Title/Summary/Keyword: PROPULSION

Search Result 6,306, Processing Time 0.027 seconds

A Study on the Analysis of Pogo Stability of Liquid Propellant Rocket (액체추진로켓의 포고 안정성 해석에 관한 연구)

  • 장홍석;연정흠;윤성기;정태규
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.10-13
    • /
    • 2002
  • Pogo is the instability resulting from the interaction between rocket structure and propulsion system of liquid propellant rocket. The coupling of structure and propulsion system can lead to severe problem in rocket. For the analysis of pogo, a time-invariant linearized mathematical model is developed for a selected flight time. Propulsion system is modeled using element representations for each components. The constitutive equation of propulsion system is a homogeneous second-order equation form in the Laplace domain. Rocket structure is modeled using FEM. From the results of modal analysis of structure, the behavior of structure can be represented. System equations for coupling structure and propulsion system are composed of all propulsion system equations and vehicle motion equations reacting on the vehicle by each component of propulsion system. The stability is obtained by the eigen solution of system matrix. The optimization of the design variables such as size, place of accumulator for suppressing pogo instability is carried out. This article of study can be used to determine the degree of stability, and guide the design of pogo suppression system.

  • PDF

Demonstration of Propulsion System for Microsatellite Based on Hydrogen Peroxide in SOHLA-2L Project

  • Sahara, Hironori
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.235-242
    • /
    • 2008
  • An innovative Panel ExTension SATellite(PETSAT) and propulsion system for PETSAT, are presented in this paper. First, we outline what PETSAT is. Next, based on PETSAT ethos, design policy of the propulsion system is provided. According to the policy, we designed propulsion system and concretely estimated and assembled mono-propellant and bi-propellant systems, and it indicated that mono-propellant propulsion with 50-60 seconds of specific impulse and 1 N of thrust is probable. In the case of bi-propellant, 120-150 seconds of specific impulse is valid even based on the design policy. We conducted captive tests of mono-propellant and bi-propellant propulsions with a breadboard model of propulsion system for PETSAT, and obtained good operations and performances. Based on the test results, we designed and manufactured flight model propulsion system for PETSAT. We are planning to demonstrate it in SOHLA-2L project progressed by the Space Oriented Higashiosaka Leading Association(SOHLA). SOHLA-2L will be the first on-orbit demonstrator of PETSAT in 2008.

  • PDF

State of the Art for Space Propulsion Employing Nuclear Power (핵동력 우주추진 기술개발 동향)

  • Hong Yeong Park;Yun Hyeong Kang;Jeong Soo Kim;Soo Seok Yang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.6
    • /
    • pp.86-100
    • /
    • 2022
  • In this paper, the concept and characteristics of the nuclear propulsion system were introduced and the state of the art for the nuclear-powered space propulsion in abroad were summarized. Since uranium used in nuclear propulsion has a very high energy density per unit mass, it has exceptional specific impulse performance compared to the existing chemical propulsion method and can reduce the amount of fuel loaded, thereby having advantage for long-distance exploration. For this reason, advanced countries in space development are recently spurring to the research of nuclear propulsion technology, and it is judged that the development of a propulsion engine using nuclear power is absolutely necessary in order to gain an competitive edge on the space development.

잠수함 및 어뢰의 추진체계 현황 1

  • 공영경
    • 전기의세계
    • /
    • v.43 no.7
    • /
    • pp.7-22
    • /
    • 1994
  • 잠수함추진방식은 크게 원자력 추진과 재래식 추진으로 나눌수 있다. 최근에는 재래식 추진방식과 하이브리드 개념으로 운용될 수 있는 AIP(air independent propulsion)방식도 활발히 연구되고 있다. AIP 추진으로는 폐회로 디젤기관추진(closed cycle diesel engine propulsion), 연료 전지추진(fuel cell propulsion) 스터링기관추진(stirling engine propulsion) 및 폐회로터빈추진(closed cycle turbine propulsion)등이 있다. 이러한 잠수함 추진체계에 대해 앞으로 크게 세부분으로 나누어 그 현황과 발전추세를 살펴보고자 한다.

  • PDF

Biomechanical Evaluation of a Manual Wheelchair with Forward. Reverse Propulsion (정.역 구동 방식 수도 휠체어의 인체공학적 성능 분석)

  • Shin, Eung-Soo;Lee, Hee-Tae;Ahn, Seong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.464-469
    • /
    • 2001
  • This work provides the biomechanical evaluations of a manual wheelchair with a bi-directional driving system. The new propulsion strategy can be accomplished by employing a special gear system that converts the oscillatory motion of a handrim into the unidirectional output motion of a wheel. A main feature of the forward. backward propulsion is to supply continuous driving torque without break. Motion. analysis has been performed through 2-dimensional image processing for measuring the kinematic properties of the upper arm and fore arm. Then, the inverse dynamics analysis has been done for obtaining the joint torques, the handrim forces and input/output powers. Results show that the output power by the forward. reverse propulsion is almost twice as much as that by conventional propulsion. Also, the new propulsion is expected to reduce the fatigues and injuries at arm joints by employing more muscle groups for movement. In conclusion, the forward. reverse propulsion can greatly improve the performances of manual wheelchairs by providing better mobility as well as by guaranteeing several advantages from a biomechanical viewpoint. Future development of a manual wheelchair optimized for the bi-directional propulsion will further improve the propulsion performances.

  • PDF

Biomechanical Characteristics of Hand Rim Contact Orientation During Wheelchair Propulsion: A Literature Review (표준형 휠체어 추진시 휠손잡이 촉수위치 특성에 관한 연구)

  • Kwon, Hyuk-Cheol;Kong, Jin-Yong
    • Physical Therapy Korea
    • /
    • v.9 no.2
    • /
    • pp.19-32
    • /
    • 2002
  • The purpose of this paper is to provide the reader with a pertinent information and research trends of biomechanics in wheelchair propulsion. Biomechanical studies for wheelchair propulsion mainly focus on the most suitable propulsion performance and methods for preventing upper extremity injuries. Recent issues have concentrated on wheelchair propulsion style and cycle mainly because of the high prevalence of repetitive strain injuries in the upper extremely such as shoulder impingement and carpel tunnel syndrome. Optimizing wheelchair propulsion performances as well as medical reflections are presented throughout the review. Information on the underlying musculoskeletal mechanisms of wheelchair propulsion has been introduced through a combination of data collection under experimental conditions and a more fundamental mathematical modelling approach. Through a synchronized analysis of the movement pattern and muscular activity pattern, insight has been gained in the wheelchair propulsion dynamics of people with a different level of disability (various level of physical activity and functional potential). Through mathematical modelling simulation, and optimization (minimizing injury and maximizing performance), underlying musculoskeletal mechanisms during Wheelchair propulsion is investigated.

  • PDF

Preliminary design of lunar lander propulsion system and ground test model (달착륙선 추진시스템 기본 설계 및 지상 모델 설계)

  • Kim, Su-Kyum;Yu, Myoung-Jong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.581-584
    • /
    • 2010
  • Korea Aerospace Research Institute (KARI) started preliminary research about the propulsion system for lunar orbiter and moon lander this year in order to prepare korean moon exploration plan of 2020s. The final goal of this study is to develop a prototype propulsion system for lunar exploration and to perform ground landing test using this propulsion system. In this year, preliminary design of propulsion system and 200N class monopropellant thruster have been conducted. In this paper, the trade-off study result and the design concept of the propulsion system for Korean moon exploration will be introduced and preliminary design of propulsion system will be presented.

  • PDF

The Characteristics and Prospects of Hybrid Propulsion Systems for Unmanned Aerial Vehicle (무인기용 하이브리드 추진시스템의 특성 및 발전전망)

  • Park, Tosoon;Song, Jaeho;Kwon, Sejin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.554-559
    • /
    • 2017
  • Recently, the global attention is focused on the development of the renewal aero-propulsion systems proved in the air pollution, the noise, the great operational cost, safety and risks. Especially, various study are conducting for the development of the advanced high power to weight ratio aircraft through the significant reduction of fuel consumption and upgrade of the propulsion efficiency, using the alternative propulsion system developments such as hydrogen and solar power system. The hybrid propulsion system can be the representative propulsion system which get the power sources by combining the merits of two or more power sources. In this study, the advancement trends, characteristics, design method which can be applied to the renewal future UAV development.

  • PDF

Study of Cold Gas Propulsion System Utilizing Butane as Liquefied Propellant (부탄을 액화 연료로 사용한 냉가스 추진 시스템에 대한 연구)

  • Kang, Suk-Jin;Kwon, Ky-Beom;Cho, Dong-Hyun;Lee, Sang-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.323-328
    • /
    • 2007
  • A direct application of liquefied gas propellants to a typical small satellite cold gas propulsion system was analyzed. Performance of systems using liquefied gas propellant under consideration was compared to that of a nitrogen cold gas propulsion system. Liquefied gas propellant propulsion system's performance, required tank volume, and required propulsion system mass has been calculated at the same mass, volume, and total impulse condition of a typical nitrogen cold gas propulsion system. It was found that the liquefied gas propulsion system has advantages in performance, volume, and mass, compared to a typical nitrogen cold gas system, and can be directly applied to a cold gas propulsion system.

First Bipropellant Propulsion System for Spacecraft in Korea

  • Han, Cho-Young;Chae, Jong-Won;Park, Eung-Sik;Baek, Myung-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.307-310
    • /
    • 2008
  • In the framework of COMS(Communication, Ocean and Meteorological Satellite) programme, the first bipropellant propulsion system for GEO satellite has been developed successfully. So far Korea has its own experience of development of a monopropellant propulsion system for LEO satellites, i.e., KOMPSAT's. Other types of propulsion systems for a satellite, such as cold gas and electric propulsion etc., are being developed somewhere in Korea, however they are not commercialised yet, apart from those two systems aforementioned. This paper mainly focused on the design of the Chemical Propulsion System(CPS) for the COMS, joint scientific and communications satellite. It includes descriptions of the general system design and a summary of the supporting analysis performed to verify suitability for space flight. Essentially it provides an overview and guide to the various engineering rationale generated in support of the COMS CPS design activities. The manufacture and subsequent testing of COMS CPS are briefly discussed. Feasibility of COMS CPS to an interplanetary mission is proposed as well.

  • PDF