• 제목/요약/키워드: PREIMPLANTATION GENETIC DIAGNOSIS

Search Result 44, Processing Time 0.024 seconds

Outcome of Preimplantation Genetic Diagnosis in Patients with Klinefelter Syndrome (클라인펠터 증후군 환자에서 착상전 유전진단의 결과)

  • Kim, Jin-Yeong;Lim, Chun-Kyu;Jun, Jin-Hyun;Park, So-Yeon;Seo, Ju-Tae;Cha, Sun-Hwa;Koong, Mi-Kyoung;Kang, Inn-Soo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.31 no.4
    • /
    • pp.253-260
    • /
    • 2004
  • Objectives: Klinefelter syndrome is the most common genetic cause of male infertility and presents with 47, XXY mainly or 46, XX/47, XXY mosaicism. It is characterized by hypogonadism and azoospermia due to testicular failure, however, sporadic cases of natural pregnancies have been reported. With the development of testicular sperm extraction (TESE) and intracytoplasmic sperm injection (ICSI), sperm can be retrieved successfully and ART is applied in these patients for pregnancy. It has been suggested that the risk of chromosome aneuploidy for both sex chromosome and autosome is increased in the sperms from 47, XXY germ cells. Considering the risk for chromosomal aneuploidy in the offspring, preimplantation genetic diagnosis (PGD) could be applied as a safe and more effective treatment option in Klinefelter syndrome. The aim of this study is to assess the outcome of PGD cycles by using FISH for sex chromosome and autosome in patients with Klinefelter syndrome. Materials and Methods: From Jan. 2001 to Dec. 2003, PGD was attempted in 8 cases of Klinefelter syndrome but TESE was failed to retrieve sperm in the 3 cases, therefore PGD was performed in 8 cycles of 5 cases (four 47, XXY and one 46, XY/47, XXY mosaicism). In one case, ejaculated sperm was used and in 4 cases, TESE sperm was used for ICSI. After fertilization, blastomere biopsy was performed in $6{\sim}7$ cell stage embryo and the chromosome aneuploidy was diagnosed by using FISH with CEP probes for chromosome X, Y and 17 or 18. Results: A total of 127 oocytes were retrieved and ICSI was performed in 113 mature oocytes. The fertilization rate was $65.3{\pm}6.0%$ (mean$\pm$SEM) and 76 embryos were obtained. Blastomere biopsy was performed in 61 developing embryos and FISH analysis was successful in 95.1% of the biopsied blastomeres (58/61). The rate of balanced embryos for chromosome X, Y and 17 or 18 was $39.7{\pm}6.9%$. The rate of aneuploidy for sex chromosome (X and Y) was $45.9{\pm}5.3%$ and $43.2{\pm}5.8%$ for chromosome 17 or 18, respectively. Embryo transfer was performed in all 8 cycles and mean number of transferred embryos was $2.5{\pm}0.5$. In 2 cases, clinical pregnancies were obtained and normal 46, XX and 46, XY karyotypes were confirmed by amniocentesis, respectively. Healthy male and female babies were delivered uneventfully at term. Conclusion: The patients with Klinefelter syndrome can benefit from ART with TESE and ICSI. Considering the risk of aneuploidy for both sex chromosome and autosome in the sperms and embryos of Klinefelter syndrome, PGD could be offered as safe and more effective treatment option.

초기 배아의 분리할구에서 중기 염색체상 획득 방법에 대한 연구: 염색체 변이로 인한 착상전 유전자 진단에서 보인자와 정상 핵형 구분을 위한 연구

  • 임천규;전진현;민동미;변혜경;김진영;궁미경;강인수
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.105-105
    • /
    • 2002
  • 염색체의 구조적 이상으로 인한 습관성 유산과 기형아의 출산을 예방하기 위해 착상전 배아에서 할구를 분석하여 정상적인 핵형을 가진 배아만을 이식하는 착상전 유전자 진단 (preimplantation genetic diagnosis, PGD)의 성공적인 임상 적용이 보고되고 있으며, 그 적용 범위가 확대되고 있다. 그러나 일반적인 간기의 핵상을 이용한 PGD에서는 형광직접보합법 probe의 제약으로 보인자와 정상적인 핵형을 구분할 수 없는 단점이 있다. 따라서 본 연구에서는 보다 정확한 PGD를 위해 생쥐 배아를 이용하여 분리한 할구에서 중기 염색체상을 획득하기 위해 미세소관 (microtubule) 형성 저해제를 처리하였으며, 이를 통해 확립된 방법을 인간의 PGD에 적용하고자 하였다. 과배란이 유도된 ICR 생쥐에서 4- 또는 8-세포기 배아를 수획하여 colcemid, nocodazole, vinblastine을 각각 0.1, 0.5, 1.0, 5.0$\mu$M을 처리하고, hoechst 33342로 염색하여 핵상을 관찰하여 최적의 농도를 결정하였다. 또한 각 미세소관 형성 저해제를 혼합 처리하여 가장 높은 중기 염색체상을 획득할 수 있는 혼합 처리를 결정하였다. 이렇게 결정된 혼합 처리 방법을 인간의 체외 수정 및 배아 이식술에서 획득된 3PN 배아에 처리하여 중기 염색체를 획득하였다. Colcemid, nocodazole, vinblastine 모두 1 $\mu$M이 최적 농도임을 확인할 수 있었다 (각각 96.3%, 92.0%, 98,4%). 미세소관 형성저해제를 혼합 처리하였을 경우 nocodazole과 vinblastine (각각 1$\mu$M)을 혼합 처리했을 때 중기 염색체 획득률(97.3%)이 가장 높았다. 인간의 3PN 배아에 1$\mu$M의 nocodazole과 vinblastine을 혼합 처리한 후, 113개의 할구를 분석하여 44개(38.9%)의 할구에서 중기 염색체를 확인할 수 있었다. 본 실험 결과를 통해 중기 염색체를 획득하기 위하여 미세소관 형성 저해제를 처리하는 방법은 생쥐의 배아에서는 효과적이지만, 인간의 배아에서는 그 효율이 다소 낮음을 알 수 있었다. 그러나 이 방법을 개선하여 인간의 할구에서 중기 염색체의 획득률을 높이고, 이를 염색체의 구조적 이상에 대한 착상전 유전자 진단에 적용한다면, 보인자와 정상의 핵상을 구분하여 정상의 핵상만을 갖는 배아의 이식을 통하여 더욱 정확한 착상전 유전자 진단을 시행할 수 있으리라 사료된다.

  • PDF

Preimplantation Genetic Diagnosis for Aneuploidy Screening in Patients with Poor Reproductive Outcome (염색체 이수성과 관련된 비정상적 임신이 예상되는 환자에서 착상전 유전진단의 결과)

  • Kim, Jin Yeong;Lim, Chun Kyu;Cha, Sun Hwa;Park, Soo Hyun;Yang, Kwang Moon;Song, In Ok;Jun, Jin Hyun;Park, So Yeon;Koong, Mi Kyoung;Kang, Inn Soo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.33 no.3
    • /
    • pp.179-187
    • /
    • 2006
  • Objectives: The risk of aneuploidies of embryos increases in advanced maternal age or parental karyotype abnormality and it results in poor reproductive outcomes such as recurrent spontaneous abortion (RSA) or repeated implantation failure (RIF). Preimplantation genetic diagnosis for aneuploidy screening (PGD-AS) can be applied for better ART outcome by selecting chromosomally normal embryos. The aim of this study is to evaluate the clinical outcome of PGD-AS and which group can get much benefit from PGD-AS among the patients expected to have poor reproductive outcome. Methods: In 42 patients, 77 PGD cycles were performed for aneuploidy screening. Patients were allocated to 3 groups according to the indication of PGD-AS: group I-patients with old age (${\geq}37$) and RIF more than 3 times (n=11, mean age=42.2 yrs.), group II-patients with RSA (${\geq}3$ times) associated with aneuploid pregnancy (n=19, mean age=38.9 yrs.), group III-parental sex chromosome abnormality or mosaicism (n=18, mean age=29.6 yrs.) including Turner syndrome, Klinefelter syndrome and 47, XYY. PGD was performed by using FISH for chromosome 13, 16, 18, 21, X and Y in group I and II, and chromosome X, Y and 18 (or 17) in group III. Results: Blastomere biopsy was successful in 530 embryos and FISH efficiency was 92.3%. The proportions of transferable embryos in each group were $32.5{\pm}17.5%$, $23.0{\pm}21.7%$ and $52.6{\pm}29.2%$ (mean ${\pm}$ SD), respectively, showing higher normal rate in group III (group II vs. III, p<0.05). The numbers of transferred embryos in each group were $3.9{\pm}1.5$, $1.9{\pm}1.1$ and $3.1{\pm}1.4$ (mean ${\pm}$ SD), respectively. The clinical pregnancy rates per transfer was 0%, 30.0% and 20.0%, and it was significantly higher in group II (group I vs. group II, p<0.05). The overall pregnancy rate per transfer was 19.6% (10/51) and the spontaneous abortion rate was 20% (2/10) of which karyotypes were euploid. Nine healthy babies (one twin pregnancy) were born with normal karyotype confirmed on amniocentesis. Conclusion: Our data suggests that PGD-AS provides advantages in patients with RSA associated with aneuploidy or sex chromosome abnormality, decreasing abortion rate and increasing ongoing pregnancy rate. It is not likely to be beneficial in RIF group due to other detrimental factors involved in implantation.

Array comparative genomic hybridization screening in IVF significantly reduces number of embryos available for cryopreservation

  • Liu, Jiaen;Sills, E. Scott;Yang, Zhihong;Salem, Shala A.;Rahil, Tayyab;Collins, Gary S.;Liu, Xiaohong;Salem, Rifaat D.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.39 no.2
    • /
    • pp.52-57
    • /
    • 2012
  • Objective: During IVF, non-transferred embryos are usually selected for cryopreservation on the basis of morphological criteria. This investigation evaluated an application for array comparative genomic hybridization (aCGH) in assessment of surplus embryos prior to cryopreservation. Methods: First-time IVF patients undergoing elective single embryo transfer and having at least one extra non-transferred embryo suitable for cryopreservation were offered enrollment in the study. Patients were randomized into two groups: Patients in group A (n=55) had embryos assessed first by morphology and then by aCGH, performed on cells obtained from trophectoderm biopsy on post-fertilization d5. Only euploid embryos were designated for cryopreservation. Patients in group B (n=48) had embryos assessed by morphology alone, with only good morphology embryos considered suitable for cryopreservation. Results: Among biopsied embryos in group A (n=425), euploidy was confirmed in 226 (53.1%). After fresh single embryo transfer, 64 (28.3%) surplus euploid embryos were cryopreserved for 51 patients (92.7%). In group B, 389 good morphology blastocysts were identified and a single top quality blastocyst was selected for fresh transfer. All group B patients (48/48) had at least one blastocyst remaining for cryopreservation. A total of 157 (40.4%) blastocysts were frozen in this group, a significantly larger proportion than was cryopreserved in group A (p=0.017, by chi-squared analysis). Conclusion: While aCGH and subsequent frozen embryo transfer are currently used to screen embryos, this is the first investigation to quantify the impact of aCGH specifically on embryo cryopreservation. Incorporation of aCGH screening significantly reduced the total number of cryopreserved blastocysts compared to when suitability for freezing was determined by morphology only. IVF patients should be counseled that the benefits of aCGH screening will likely come at the cost of sharply limiting the number of surplus embryos available for cryopreservation.