• Title/Summary/Keyword: PRDX3

Search Result 13, Processing Time 0.025 seconds

Serum Peroxiredoxin3 is a Useful Biomarker for Early Diagnosis and Assessemnt of Prognosis of Hepatocellular Carcinoma in Chinese Patients

  • Shi, Liang;Wu, Li-Li;Yang, Jian-Rong;Chen, Xiao-Fei;Zhang, Yi;Chen, Zeng-Qiang;Liu, Cun-Li;Chi, Sheng-Ying;Zheng, Jia-Ying;Huang, Hai-Xia;Yu, Fu-Jun;Lin, Xiang-Yang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.2979-2986
    • /
    • 2014
  • Background: Recently, peroxiredoxin3 (PRDX3) was identified as a novel molecular marker for the progression of hepatocellular carcinoma (HCC). However, its potential clinical application as a serum marker for the early diagnosis and prognosis of HCC has not been investigated. Methods: PRDX3, alpha-fetaprotein (AFP), and other biochemical parameters were measured in serum samples from 297 Chinese patients, including 96 with HCC, 98 with liver cirrhosis (LC), and 103 healthy controls (HCs). Correlations between serum PRDX3 expression and clinicopathological variables and the relationship between serum PRDX3 expression and prognosis were analyzed. Results: Serum PRDX3 was significantly higher in HCC patients than in the LC and HC groups. The sensitivity and specificity of serum PRDX3 for the diagnosis of HCC were 85.9% and 75.3%, respectively, at a cutoff of 153.26 ng/mL, and the area under the curve was 0.865. Moreover, serum PRDX3 expression was strongly associated with AFP level, tumor diameter, TNM stage, and portal vein invasion. Kaplan-Meier curve analysis revealed that HCC patients with high serum PRDX3 expression had a shorter median survival time than those with low PRDX3 expression. Moreover, serum PRDX3 expression was an independent risk factor for overall survival. The inverse correlation between serum PRDX3 and patient survival remained significant in patients with early-stage HCC and in those with normal serum AFP levels. Conclusions: Serum PRDX3 can be used as a noninvasive biomarker for the diagnosis and/or prognosis of HCC.

RPK118, a PX Domain-containing Protein, Interacts with Peroxiredoxin-3 through Pseudo-Kinase Domains

  • Liu, Lungling;Yang, Chenyi;Yuan, Jian;Chen, Xiujuan;Xu, Jianing;Wei, Youheng;Yang, Jingchun;Lin, Gang;Yu, Long
    • Molecules and Cells
    • /
    • v.19 no.1
    • /
    • pp.39-45
    • /
    • 2005
  • RPK118 is a sphingosine kinase-1-binding protein that has been implicated in sphingosine 1 phosphate-mediated signaling. It contains a PX (phox homology) domain and two pseudo-kinase domains, and co-localizes with sphingosine kinase-1 on early endosomes. In this study we identified a novel RPK118-binding protein, PRDX3 (peroxiredoxin-3), by yeast two-hybrid screening. The interaction between these proteins was confirmed by pull-down assays and co-immunoprecipitation experiments. Deletion studies showed that RPK118 interacted with PRDX3 through its pseudokinase domains, and with early endosomes through its PX domain. Double immunofluorescence experiments demonstrated that PRDX3 co-localized with RPK118 on early endosomes in COS7 cells. PRDX3 is a member of the antioxidant family of proteins synthesized in the cytoplasm and functioning in mitochondria. Our findings indicate that RPK118 is a PRDX3-binding protein that may be involved in transporting PRDX3 from the cytoplasm to its mitochondrial site of function or to other membrane structures via endosome trafficking.

Oxidative stress and the antioxidant enzyme system in the developing brain

  • Shim, So-Yeon;Kim, Han-Suk
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.3
    • /
    • pp.107-111
    • /
    • 2013
  • Preterm infants are vulnerable to the oxidative stress due to the production of large amounts of free radicals, antioxidant system insufficiency, and immature oligodendroglial cells. Reactive oxygen species (ROS) play a pivotal role in the development of periventricular leukomalacia. The three most common ROS are superoxide ($O2^{\cdot-}$), hydroxyl radical ($OH^{\cdot}$), and hydrogen peroxide ($H_2O_2$). Under normal physiological conditions, a balance is maintained between the production of ROS and the capacity of the antioxidant enzyme system. However, if this balance breaks down, ROS can exert toxic effects. Superoxide dismutase, glutathione peroxidase, and catalase are considered the classical antioxidant enzymes. A recently discovered antioxidant enzyme family, peroxiredoxin (Prdx), is also an important scavenger of free radicals. Prdx1 expression is induced at birth, whereas Prdx2 is constitutively expressed, and Prdx6 expression is consistent with the classical antioxidant enzymes. Several antioxidant substances have been studied as potential therapeutic agents; however, further preclinical and clinical studies are required before allowing clinical application.

Mitochondrial metabolism in cancer stem cells: a therapeutic target for colon cancer

  • Song, In-Sung;Jeong, Yu Jeong;Han, Jin
    • BMB Reports
    • /
    • v.48 no.10
    • /
    • pp.539-540
    • /
    • 2015
  • It has been proposed that the selective elimination of cancer stem cells (CSCs) using targeted therapy could greatly reduce tumor growth, recurrence, and metastasis. To develop effective therapeutic targets for CSC elimination, we aimed to define the properties of CSC mitochondria, and identify CSC-mitochondria-specific targets in colon cancer. We found that colon CSCs utilize mitochondrial oxidative phosphorylation (OXPHOS) to produce ATP. We also found that forkhead box protein 1 (FOXM1)-induced peroxiredoxin 3 (PRDX3) maintains the mitochondrial function, and the FOXM1/PRDX3 mitochondrial pathway maintains survival of colon CSCs. Furthermore, FOXM1 induces CD133 (PROM1/prominin 1) expression, which maintains the stemness of colon CSCs. Together, our findings indicate that FOXM1, PRDX3, and CD133 are potential therapeutic targets for the elimination of CSCs in colon cancer.

Plasma Nuclear Factor Kappa B and Serum Peroxiredoxin 3 in Early Diagnosis of Hepatocellular Carcinoma

  • Ismail, Saber;Mayah, Wael;Battia, Hassan El;Gaballah, Hanaa;Jiman-Fatani, Asif;Hamouda, Hala;Afifi, Mohamed A.;Elmashad, Nehal;Saadany, Sherif El
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.4
    • /
    • pp.1657-1663
    • /
    • 2015
  • Background: Early diagnosis of hepatocellular carcinoma (HCC) is the most important step in successful treatment. However, it is usually rare due to the lack of a highly sensitive specific biomarker so that the HCC is usually fatal within few months after diagnosis. The aim of this work was to study the role of plasma nuclear factor kappa B (NF-${\kappa}B$) and serum peroxiredoxin 3 (PRDX3) as diagnostic biomarkers for early detection of HCC in a high-risk population. Materials and Methods: Plasma nuclear factor kappa B level (NF-${\kappa}B$) and serum peroxiredoxin 3 (PRDX3) levels were measured using enzyme linked immunosorbent assay (ELISA), in addition to alpha-fetoprotein (AFP) in 72 cirrhotic patients, 64 patients with HCC and 29 healthy controls. Results: NF-${\kappa}B$ and PRDX3 were significantly elevated in the HCC group in relation to the others. Higher area under curve (AUC) of 0.854 (for PRDX3) and 0.825 (for NF-${\kappa}B$) with sensitivity of 86.3% and 84.4% and specificity of 75.8% and 75.4% respectively, were found compared to AUC of alpha-fetoprotein (AFP) (0.65) with sensitivity of 72.4% and specificity of 64.3%. Conclusions: NF-${\kappa}B$ and PRDX3 may serve as early and sensitive biomarkers for early detection of HCC facilitating improved management. The role of nuclear factor kappa B (NF-${\kappa}B$) as a target for treatment of liver fibrosis and HCC must be widely evaluated.

Proteomic analyses reveal that ginsenoside Rg3(S) partially reverses cellular senescence in human dermal fibroblasts by inducing peroxiredoxin

  • Jang, Ik-Soon;Jo, Eunbi;Park, Soo Jung;Baek, Su Jeong;Hwang, In-Hu;Kang, Hyun Mi;Lee, Je-Ho;Kwon, Joseph;Son, Junik;Kwon, Ho Jeong;Choi, Jong-Soon
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.50-57
    • /
    • 2020
  • Background: The cellular senescence of primary cultured cells is an irreversible process characterized by growth arrest. Restoration of senescence by ginsenosides has not been explored so far. Rg3(S) treatment markedly decreased senescence-associated β-galactosidase activity and intracellular reactive oxygen species levels in senescent human dermal fibroblasts (HDFs). However, the underlying mechanism of this effect of Rg3(S) on the senescent HDFs remains unknown. Methods: We performed a label-free quantitative proteomics to identify the altered proteins in Rg3(S)-treated senescent HDFs. Upregulated proteins induced by Rg3(S) were validated by real-time polymerase chain reaction and immunoblot analyses. Results: Finally, 157 human proteins were identified, and variable peroxiredoxin (PRDX) isotypes were highly implicated by network analyses. Among them, the mitochondrial PRDX3 was transcriptionally and translationally increased in response to Rg3(S) treatment in senescent HDFs in a time-dependent manner. Conclusion: Our proteomic approach provides insights into the partial reversing effect of Rg3 on senescent HDFs through induction of antioxidant enzymes, particularly PRDX3.

Effect of Antioxidant Enzymes on Hypoxia-Induced HIF-$1{\alpha}$ Accumulation and Erythropoietin Activity

  • Cho, Eun-Jin;Cho, Ki-Woon;Chung, Kyoung-Jin;Yang, Hee-Young;Park, Hyang-Rim;Park, Byung-Ju;Lee, Tae-Hoon
    • International Journal of Oral Biology
    • /
    • v.34 no.4
    • /
    • pp.205-213
    • /
    • 2009
  • The mechanisms underlying the actions of the antioxidants upon reactive oxygen species (ROS) generation by NADPH oxidase complex have remained uncertain. In this study, we investigated NADPH oxidase activity and the role of antioxidant enzymes upon the generation of ROS during hypoxic stress. ROS generation was found to increase in the mouse kidney under hypoxic stress in a time-dependent manner. Moreover, we found in MCT cells that hypoxia-induced hydrogen peroxide production was decreased by NAC pretreatment. We further analyzed HIF-$1{\alpha}$, PHD2 and VHL expression in the NAC-pretreated MCT cells and assessed the response of antioxidant enzymes at the transcriptional and translational levels. SOD3 and Prdx2 were significantly increased during hypoxia in the mouse kidney. We also confirmed in hypoxic $Prdx2^{-/-}$ and SOD3 transgenic mice that erythropoietin (EPO) is transcriptionally regulated by HIF-$1{\alpha}$. In addition, although EPO protein was found to be expressed in a HIF-$1{\alpha}$ independent manner in three mouse lines, its activity differed markedly between normal and $Prdx2^{-/-}$/SOD3 transgenic mice during hypoxic stress. In conclusion, our current results indicate that NADPH oxidase-mediated ROS generation is associated with hypoxic stress in the mouse kidney and that SOD3 and Prdx2 cooperate to regulate cellular redox reactions during hypoxia.

Effects of Herbal Prescription on Obesity Related Hormones in Rats with Estrogen Deficiency (에스트로겐이 결핍된 흰쥐에서 한약혼합물이 비만 관련 호르몬에 미치는 영향)

  • Park, Jung-Sik;Lim, Jeong Seol;Lim, Hyung-Ho;Hwang, Gwi Seo
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.30 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • Objectives Depletion of ovarian function after menopause in women induces estrogen deficiency leading to increased fat and decreased muscle mass. In this study, we examined the effect of herbal medicines by measuring hormone expression in muscle tissue of estrogen-deficient rats induced by ovariectomy. Methods Ovariectomy was performed to induce estrogen deficiency, and mice were given herbal prescription (HP) for 6 weeks. Estrogen-deficient rats were divided into two groups: one group (HPH) which were orally administered HP 200 mg/kg and the other group (HPL) administered HP 40 mg/kg. Weight changes in both groups were measured using polymerase chain reaction (PCR). After extraction of the femoral muscles in mice, the expression of the leptin, lipoprotein lipase (LPL), diacyl glycerol acyltransferase (DGAT)1, peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α, NADH dehydrogenase (NDH), farnesyl diphosphate farnesyltransferase (FDFT)1, lanosterol synthase (LSS), phosphatidylethanolamine N-methyltransferase (PEMT), and peroxiredoxin (Prdx6) were measured using PCR. Results HP increased the expression of leptin, LPL, DGAT1, PGC-1α, NDH, FDFT1, LSS, PEMT, and Prdx6. HP affects body fat metabolism and is effective in improving menopausal obesity and obesity complications caused by estrogen deficiency. However, HP does not affect the expression of tumor necrosis factor-α and 3-hydroxy-3-methylglutaryl-CoA reductase, and thus will not be effective in obesity-related metabolic diseases. Conclusions HP is thought to inhibit weight gain by regulating hormone expression related to glucose metabolism and lipid metabolism in muscle tissue of estrogen-deficient rats.

Cytoprotective Effect of Makgeolli Lees on Paraquat Induced Oxidative Stress in A549 Cells via Activation of NRF2 and Antioxidant Genes

  • Jeon, Miso;Rahman, Naimur;Kim, Yong-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.277-286
    • /
    • 2016
  • Makgeolli lees (ML) has several physiological effects such as antioxidant, antidiabetic, and anticancer properties, but its biological functions have not been determined definitively. Here, we tested whether ML has a cytoprotective effect on paraquat (PQ)-induced oxidative stress in the human lung carcinoma cell line A549. At 0.1 mg/ml ML, viability of PQ-exposed A549 cells was restored by 12.4%, 18.5%, and 48.6% after 24, 48, and 72 h, respectively. ML also reduced production of the intracellular reactive oxygen species (ROS) that were generated by PQ treatment. Further experiments revealed that ML treatment enhanced the expression and nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2) as well as ARE-GFP reporter activity. ML treatment also effectively increased the expression of NRF2's target genes NAD(P)H dehydrogenase quinone 1 (NQO1) and heme oxygenase 1 (HO-1). Moreover, we found that expression of cytoprotective genes, including glutathione peroxidases (GPXs), superoxide dismutase (SOD1), catalase (CAT), peroxiredoxin 3 (PRDX3), and peroxiredoxin 4 (PRDX4), was greatly enhanced by treatment with ML during PQ exposure. Taken together, the data suggest that treatment of PQ-exposed A549 cells with ML ameliorates cytotoxicity through induction of NRF2 expression and its target genes HO-1, NQO1, and other antioxidant genes. Thus, ML may serve as a functional food applicable to ROS-mediated human diseases.

Identification of Differentially Expressed Genes by TCDD in Human Bronchial Cells: Toxicogenomic Markers for Dioxin Exposure

  • Park, Chung-Mu;Jin, Kyong-Suk;Lee, Yong-Woo
    • Biomedical Science Letters
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Differentially expressed genes by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) were identified in order to evaluate them as dioxin-sensitive markers and crucial signaling molecules to understand dioxin-induced toxic mechanisms in human bronchial cells. Gene expression profiling was analyzed by cDNA microarray and ten genes were selected for further study. They were cytochrome P450, family 1, subfamily B, polypeptide 1 (CYP1B1), S100 calcium binding protein A8 (calgranulin A), S100 calcium binding protein A9 (calgranulin B), aldehyde dehydrogenase 1 family, member A3 (ALDH6) and peroxiredoxin 5 (PRDX5) in up-regulated group. Among them, CYP1B1 was used as a hallmark for dioxin and sharply increased by TCDD exposure. Down-regulated genes were IK cytokine, interferon-induced protein with tetratricopeptide repeats 1 (IFIT1), nuclease sensitive element binding protein 1 (NSEP1), protein tyrosine phosphatase type VI A, member 1 (PTP4A1), ras oncogene family 32 (RAB32). Although up-regulated 4 genes in microarray were coincided with northern hybridization, down-regulated 5 genes showed U-shaped expression pattern which is sharply decreased at lower doses and gradually increased at higher doses. These results introduce some of TCDD-responsive genes can be sensitive markers against TCDD exposure and used as signaling cues to understand toxicity initiated by TCDD inhalation in pulmonary tissues.