• 제목/요약/키워드: PRA/PSA

검색결과 13건 처리시간 0.025초

Generic and adaptive probabilistic safety assessment models: Precursor analysis and multi-purpose utilization

  • Ayoub, Ali;Kroger, Wolfgang;Sornette, Didier
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.2924-2932
    • /
    • 2022
  • Motivated by learning from experience and exploiting existing knowledge in civil nuclear operations, we have developed in-house generic Probabilistic Safety Assessment (PSA) models for pressurized and boiling water reactors. The models are computationally light, handy, transparent, user-friendly, and easily adaptable to account for major plant-specific differences. They cover the common internal initiating events, frontline and support systems reliability and dependencies, human-factors, common-cause failures, and account for new factors typically overlooked in many PSAs. For quantification, the models use generic US reliability data, precursor analysis reports, the ETHZ Curated Nuclear Events Database, and experts' opinions. Moreover, uncertainties in the most influential basic events are addressed. The generated results show good agreement with assessments available in the literature with detailed PSAs. We envision the models as an unbiased framework to measure nuclear operational risk with the same "ruler", and hence support inter-plant risk comparisons that are usually not possible due to differences in plant-specific PSA assumptions and scopes. The models can be used for initial risk screening, order-of-magnitude precursor analysis, and other research/pedagogic applications especially when no plant-specific PSAs are available. Finally, we are using the generic models for large-scale precursor analysis that will generate big picture trends, lessons, and insights.

PCR법에 의한 박테리아의 동정 및 오존과 UV에 의한 제거 연구 (Monitoring of Bacteria using PCR Method and Inactivation with Ozone and UV)

  • 오병수;주설;김경숙;강태희;이지영;이혜영;강준원
    • 한국물환경학회지
    • /
    • 제20권2호
    • /
    • pp.170-175
    • /
    • 2004
  • The purpose of this study was to monitor bacteria present in raw water and to investigate the effect of ozone, UV and combined ozone/UV processes for inactivating bacteria. Both polymerase chain reaction (PCR)-fragment length polymorphic analysis (PRA) and PCR-sequence analysis (PSA) were applied for the simultaneous analysis of numerous bacteria species present in each tested water, such as drinking water (DRW), drinking water source (DRWS) and sewage effluent water (SEW). According to the result, the number of detected bacteria species was zero in DRW, 58 in DRWS and 13 in SEW. After treatment of the each process, the ozone/UV process was the most successful for inactivating almost all bacteria. However, it was found that Flavobacterium sp., Pseudomonas sp. and Beta proteobacterium sp. had strong resistant to all tested processes, requiring further detailed study.

국내 전출력 원전 적용 화재 인간신뢰도분석 절차 개발 (Development of a Fire Human Reliability Analysis Procedure for Full Power Operation of the Korean Nuclear Power Plants)

  • 최선영;강대일
    • 한국안전학회지
    • /
    • 제35권1호
    • /
    • pp.87-96
    • /
    • 2020
  • The purpose of this paper is to develop a fire HRA (Human Reliability Analysis) procedure for full power operation of domestic NPPs (Nuclear Power Plants). For the development of fire HRA procedure, the recent research results of NUREG-1921 in an effort to meet the requirements of the ASME/ANS PRA Standard were reviewed. The K-HRA method, a standard method for HRA of a domestic level 1 PSA (Probabilistic Safety Assessment) and fire related procedures in domestic NPPs were reviewed. Based on the review, a procedure for the fire HRA required for a domestic fire PSA based on the K-HRA method was developed. To this end, HRA issues such as new operator actions required in the event of a fire and complexity of fire situations were considered. Based on the four kinds of HFE (Human Failure Event) developed for a fire HRA in this research, a qualitative analysis such as feasibility evaluation was suggested. And also a quantitative analysis process which consists of screening analysis and detailed analysis was proposed. For the qualitative analysis, a screening analysis by NUREG-1921 was used. In this research, the screening criteria for the screening analysis was modified to reduce vague description and to reflect recent experimental results. For a detailed analysis, the K-HRA method and scoping analysis by NUREG-1921 were adopted. To apply K-HRA to fire HRA for quantification, efforts to modify PSFs (Performance Shaping Factors) of K-HRA to reflect fire situation and effects were made. For example, an absence of STA (Shift Technical Advisor) to command a fire brigade at a fire area is considered and the absence time should be reflected for a HEP (Human Error Probability) quantification. Based on the fire HRA procedure developed in this paper, a case study for HEP quantification such as a screening analysis and detailed analysis with the modified K-HRA was performed. It is expected that the HRA procedure suggested in this paper will be utilized for fire PSA for domestic NPPs as it is the first attempt to establish an HRA process considering fire effects.