• 제목/요약/키워드: PR-MAC

검색결과 4건 처리시간 0.019초

수중 음파 센서 네트워크에서 우선순위 기반의 PR-MAC 포로토콜 (PR-MAC Protocol based on Priority in Underwater Acoustic Sensor Networks)

  • 조희진;남궁정일;윤남열;박수현;류영선
    • 한국멀티미디어학회논문지
    • /
    • 제14권2호
    • /
    • pp.258-268
    • /
    • 2011
  • 수중 음파 센서 네트워크는 수종환경에서 재해방지, 환경 감시 시스템 등의 용도로 이용될 수 있다. 그러나 수중환경에서는 지상과는 다른 긴 전파 지연과 낮은 전송 속도, 제한된 대역폭파 같은 특성을 고려하여야 한다. 본 논문은 수중 음파 센서 네트워크에서 우선순위에 따라 슬롯이 각 노드에 맞게 할당되는 비경쟁방식의 슬롯 예약 구간을 통해 충돌 및 에너지 손실을 최소화하는 Priority Reservation MAC(PR-MAC) 프로토콜을 제안한다. 또한 성능을 평가하기 위해 수학적 분석 모델을 제시하고 그 결과로 충돌 확률, 충돌에 의한 에너지 소모량, 처리율, 채널 효율을 기존 프로토콜과 비교 평가하여 제안된 프로토콜의 우수성을 보인다.

회전익 채널내 후류장에 의한 비정상 유동특성에 관한 연구 (Unsteady Flow Fields in a Rotor Blade Passage by Wake Passing)

  • 김윤제;전용렬
    • 한국유체기계학회 논문집
    • /
    • 제2권4호
    • /
    • pp.16-23
    • /
    • 1999
  • The characteristic of unsteady flowfields on gas turbine, particularly on a rotor blade surface has been numerically investigated. The unsteady flow in a rotor blade passage as a result of wake/blade interaction is modeled by the inviscid flow approach, and solved by Euler equations using a time accurate marching scheme. Unsteady flow in the blade passage is induced by periodically moving a wake model across the passage inlet. The wake model used in this study is the Gaussian wate model in which the wake flow is assumed to be parallel with uniform static pressure and uniform relative total enthalpy. Numerical results show that for the case of Ps/Pr=1.5, the velocity and pressure distribution on the blade surfaces have much more complex profiles than for the case of Ps/Pr=1.0.

  • PDF

NUMERICAL SOLUTIONS OF AN UNSTEADY 2-D INCOMPRESSIBLE FLOW WITH HEAT AND MASS TRANSFER AT LOW, MODERATE, AND HIGH REYNOLDS NUMBERS

  • AMBETHKAR, V.;KUSHAWAHA, D.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제21권2호
    • /
    • pp.89-107
    • /
    • 2017
  • In this paper, we have proposed a modified Marker-And-Cell (MAC) method to investigate the problem of an unsteady 2-D incompressible flow with heat and mass transfer at low, moderate, and high Reynolds numbers with no-slip and slip boundary conditions. We have used this method to solve the governing equations along with the boundary conditions and thereby to compute the flow variables, viz. u-velocity, v-velocity, P, T, and C. We have used the staggered grid approach of this method to discretize the governing equations of the problem. A modified MAC algorithm was proposed and used to compute the numerical solutions of the flow variables for Reynolds numbers Re = 10, 500, and 50000 in consonance with low, moderate, and high Reynolds numbers. We have also used appropriate Prandtl (Pr) and Schmidt (Sc) numbers in consistence with relevancy of the physical problem considered. We have executed this modified MAC algorithm with the aid of a computer program developed and run in C compiler. We have also computed numerical solutions of local Nusselt (Nu) and Sherwood (Sh) numbers along the horizontal line through the geometric center at low, moderate, and high Reynolds numbers for fixed Pr = 6.62 and Sc = 340 for two grid systems at time t = 0.0001s. Our numerical solutions for u and v velocities along the vertical and horizontal line through the geometric center of the square cavity for Re = 100 has been compared with benchmark solutions available in the literature and it has been found that they are in good agreement. The present numerical results indicate that, as we move along the horizontal line through the geometric center of the domain, we observed that, the heat and mass transfer decreases up to the geometric center. It, then, increases symmetrically.

Analysis of load sharing characteristics for a piled raft foundation

  • Ko, Junyoung;Cho, Jaeyeon;Jeong, Sangseom
    • Geomechanics and Engineering
    • /
    • 제16권4호
    • /
    • pp.449-461
    • /
    • 2018
  • The load sharing ratio (${\alpha}_{pr}$) of piles is one of the most common problems in the preliminary design of piled raft foundations. A series of 3D numerical analysis are conducted so that special attentions are given to load sharing characteristics under varying conditions, such as pile configuration, pile diameter, pile length, raft thickness, and settlement level. Based on the 3D FE analysis, influencing factors on load sharing behavior of piled raft are investigated. As a result, it is shown that the load sharing ratio of piled raft decreases with increasing settlement level. The load sharing ratio is not only highly dependent on the system geometries of the foundation but also on the settlement level. Based on the results of parametric studies, the load sharing ratio is proposed as a function of the various influencing factors. In addition, the parametric analyses suggest that the load sharing ratios to minimize the differential settlement of piled raft are ranging from 15 to 48% for friction pile and from 15 to 54% for end-bearing pile. The recommendations can provide a basis for an optimum design that would be applicable to piled rafts taking into account the load sharing characteristics.