• Title/Summary/Keyword: PR-MAC

Search Result 4, Processing Time 0.017 seconds

PR-MAC Protocol based on Priority in Underwater Acoustic Sensor Networks (수중 음파 센서 네트워크에서 우선순위 기반의 PR-MAC 포로토콜)

  • Cho, Hui-Jin;NamGung, Jung-Il;Yun, Nam-Yeol;Park, Soo-Hyun;Ryuh, Young-Sun
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.2
    • /
    • pp.258-268
    • /
    • 2011
  • Underwater acoustic sensor networks can be used disaster prevention and environmental monitoring systems in underwater environments. Because, the underwater environment is different from the ground, the long propagation delay, low transfer rates and limited bandwidth characteristics should be considered. In this, paper will propose the MAC protocol that allocates time slot into each node according to priority policy through the period of contention-free slot reservation in underwater acoustic sensor networks in order to avoid collision and minimize energy consumption waste. We perform mathematical analysis to evaluate the performance of the proposed protocol with regard to the collision probability, the energy consumption by collision, throughput and channel utilization. We compare the proposed protocol with the conventional protocol, and the performance results show that the proposed protocol outperforms the conventional protocol.

Unsteady Flow Fields in a Rotor Blade Passage by Wake Passing (회전익 채널내 후류장에 의한 비정상 유동특성에 관한 연구)

  • Kim, Youn J.;Jeon, Y.-R
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.4 s.5
    • /
    • pp.16-23
    • /
    • 1999
  • The characteristic of unsteady flowfields on gas turbine, particularly on a rotor blade surface has been numerically investigated. The unsteady flow in a rotor blade passage as a result of wake/blade interaction is modeled by the inviscid flow approach, and solved by Euler equations using a time accurate marching scheme. Unsteady flow in the blade passage is induced by periodically moving a wake model across the passage inlet. The wake model used in this study is the Gaussian wate model in which the wake flow is assumed to be parallel with uniform static pressure and uniform relative total enthalpy. Numerical results show that for the case of Ps/Pr=1.5, the velocity and pressure distribution on the blade surfaces have much more complex profiles than for the case of Ps/Pr=1.0.

  • PDF

NUMERICAL SOLUTIONS OF AN UNSTEADY 2-D INCOMPRESSIBLE FLOW WITH HEAT AND MASS TRANSFER AT LOW, MODERATE, AND HIGH REYNOLDS NUMBERS

  • AMBETHKAR, V.;KUSHAWAHA, D.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.2
    • /
    • pp.89-107
    • /
    • 2017
  • In this paper, we have proposed a modified Marker-And-Cell (MAC) method to investigate the problem of an unsteady 2-D incompressible flow with heat and mass transfer at low, moderate, and high Reynolds numbers with no-slip and slip boundary conditions. We have used this method to solve the governing equations along with the boundary conditions and thereby to compute the flow variables, viz. u-velocity, v-velocity, P, T, and C. We have used the staggered grid approach of this method to discretize the governing equations of the problem. A modified MAC algorithm was proposed and used to compute the numerical solutions of the flow variables for Reynolds numbers Re = 10, 500, and 50000 in consonance with low, moderate, and high Reynolds numbers. We have also used appropriate Prandtl (Pr) and Schmidt (Sc) numbers in consistence with relevancy of the physical problem considered. We have executed this modified MAC algorithm with the aid of a computer program developed and run in C compiler. We have also computed numerical solutions of local Nusselt (Nu) and Sherwood (Sh) numbers along the horizontal line through the geometric center at low, moderate, and high Reynolds numbers for fixed Pr = 6.62 and Sc = 340 for two grid systems at time t = 0.0001s. Our numerical solutions for u and v velocities along the vertical and horizontal line through the geometric center of the square cavity for Re = 100 has been compared with benchmark solutions available in the literature and it has been found that they are in good agreement. The present numerical results indicate that, as we move along the horizontal line through the geometric center of the domain, we observed that, the heat and mass transfer decreases up to the geometric center. It, then, increases symmetrically.

Analysis of load sharing characteristics for a piled raft foundation

  • Ko, Junyoung;Cho, Jaeyeon;Jeong, Sangseom
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.449-461
    • /
    • 2018
  • The load sharing ratio (${\alpha}_{pr}$) of piles is one of the most common problems in the preliminary design of piled raft foundations. A series of 3D numerical analysis are conducted so that special attentions are given to load sharing characteristics under varying conditions, such as pile configuration, pile diameter, pile length, raft thickness, and settlement level. Based on the 3D FE analysis, influencing factors on load sharing behavior of piled raft are investigated. As a result, it is shown that the load sharing ratio of piled raft decreases with increasing settlement level. The load sharing ratio is not only highly dependent on the system geometries of the foundation but also on the settlement level. Based on the results of parametric studies, the load sharing ratio is proposed as a function of the various influencing factors. In addition, the parametric analyses suggest that the load sharing ratios to minimize the differential settlement of piled raft are ranging from 15 to 48% for friction pile and from 15 to 54% for end-bearing pile. The recommendations can provide a basis for an optimum design that would be applicable to piled rafts taking into account the load sharing characteristics.