• Title/Summary/Keyword: PPT(Peak Power Tracking)

Search Result 8, Processing Time 0.024 seconds

Balanced Tapped Inductors for RPPT BCDR(Battery Charger DisCharger) (RPPT 시스템을 위한 새로운 배터리 충.방전기)

  • 이기선
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.472-475
    • /
    • 2000
  • An balanced tapped inductors using RPPT (Regulated Peak Power Tracking) system is proposed. In the series/parallel PPT system battery charger and discharger are operating complementary. So they both can be combined into a single hardware block. Battery charger and dis-charger share same magnetic cores thus can be reduced core weights.

  • PDF

Energy Balance and Power Performance Analysis for Satellite in Low Earth Orbit

  • Jang, Sung-Soo;Kim, Sung-Hoon;Lee, Sang-Ryool;Choi, Jae-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.3
    • /
    • pp.253-262
    • /
    • 2010
  • The electrical power system (EPS) of Korean satellites in low-earth-orbit is designed to achieve energy balance based on a one-orbit mission scenario. This means that the battery has to be fully charged at the end of a one-orbit mission. To provide the maximum solar array (SA) power generation, the peak power tracking (PPT) method has been developed for a spacecraft power system. The PPT is operated by a software algorithm, which tracks the peak power of the SA and ensures the battery is fully charged in one orbit. The EPS should be designed to avoid the stress of electronics in order to handle the main bus power from the SA power. This paper summarizes the results of energy balance to achieve optimal power sizing and the actual trend analysis of EPS performance in orbit. It describes the results of required power for the satellite operation in the worst power conditions at the end-of-life, the methods and input data used in the energy balance, and the case study of energy balance analyses for the normal operation in orbit. Both 10:35 AM and 10:50 AM crossing times are considered, so the power performance in each case is analyzed with the satellite roll maneuver according to the payload operation concept. In addition, the data transmission to the Korea Ground Station during eclipse is investigated at the local-time-ascending-node of 11:00 AM to assess the greatest battery depth-of-discharge in normal operation.

Analysis of the Charge Controlled Inductor Current Sensing Peak-Power-Tracking Solar Array Regulator

  • Lee, K.S.;Cho, Y.J.;Cho, B.H.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.982-986
    • /
    • 1998
  • The peak-power-tracking solar array regulator sensing the inductor current is proposed. Since it uses the inductor current as the solar array output power information, the PPT control scheme can be greatly simplified. The charge controlled two-loop scheme is presented to improve the dynamics due to the inductor current sensing. The comparison between the single-voltage loop controlled system and the two-loop controlled system employing the charge control is presented. This paper also contains the simulation results of that comparison.

  • PDF

Maximum power point tracking method for building integrated PV system (건물용 태양광 컨버터의 최대전력 추종 기법 개발)

  • Yu, Byung-Gyu;Yu, Gwon-Jong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.299-303
    • /
    • 2011
  • This paper proposes a novel sensorless maximum power point tracking (11PPT) algorithm for PV systems. The method is based on dividing the operating time into several intervals in which the PV terminals are short circuited in one interval and the calculated short-current of the PV is obtained and used to determine the optimum operating point where the maximum output power can be obtained. The proposed MPPT algorithm has been introduced into a current-controlled boost converter whose duty ratio is controlled to the maintain MPP condition. The same sequence is then repeated regularly capturing the PV maximum power. The main advantage of this method is eliminating the current sensor. Meanwhile, this MPPT algorithm reduces the power oscillations around the peak power point which occurs with perturbation and observation algorithms. In addition, the total cost will decrease by removing the current sensor from the PV side. Finally, simulation results confirm the accuracy of the proposed method.

  • PDF

Regulated Peak Power Tracking (RPPT) System Using Parallel Converter Topologies

  • Ali, Muhammad Saqib;Bae, Hyun-Su;Lee, Seong-Jun;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.870-879
    • /
    • 2011
  • Regulated peak power tracking (RPPT) systems such as the series structure and the series-parallel structures are commonly used in satellite space power systems. However, these structures process the solar array power or the battery power to the load through two cascaded regulators during one orbit cycle, which reduces the energy transfer efficiency. Also the battery charging time is increased due to placement of converter between the battery and the solar array. In this paper a parallel structure has been proposed which can improve the energy transfer efficiency and the battery charging time for satellite space power RPPT systems. An analogue controller is used to control all of the required functions, such as load voltage regulation and solar array stabilization with maximum power point tracking (MPPT). In order to compare the system efficiency and the battery charging efficiency of the proposed structure with those of a series (conventional) structure and a simplified series-parallel structure, simulations are performed and the results are analyzed using a loss analysis model. The proposed structure charges the battery more quickly when compared to the other two structures. Also the efficiency of the proposed structure has been improved under different modes of solar array operation when compared with the other two structures. To verify the system, experiments are carried out under different modes of solar array operation, including PPT charge, battery discharge, and eclipse and trickle charge.

Analysis of the battery charging and discharging system for spacecrafts (인공위성용 총방전 시스템의 해석)

  • 김영태;김희진
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.6
    • /
    • pp.932-942
    • /
    • 1995
  • A spacecraft power system can be divided into two types : DET system(Direct Energy Transfer system) and PPT system(Peak Power Tracking system). In a DET system employing the regulated bus voltage control method, the battery charger and discharger are widely used for the bus voltage regulation. The battery charger has two different modes of operation. One is the bus voltage regulation mode and the other is the charge current regulation mode. The battery discharger is employed to provide the power when the spacecraft is in the earth's shadow or the sun is eclipsed. The operating mode, charging or discharging, is selected by a power control circuit. In this paper, small-signal dynamic characteristics of battery charging and discharging system are analyzed to facilitate design of control loop for optimum performance. Control loop designs in various operating modes are discussed. Anaylses are verified through experiments.

  • PDF

THE DESIGN AND ANALYSIS PROGRAM FOR THE DEVELOPMENT OF LEO SATELLITE ELECTRICAL POWER SUBSYSTEM (저궤도 인공위성 전력계 개발을 위한 설계 분석 프로그램)

  • Lee, Sang-Kon;Ra, Sung-Woong
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.2
    • /
    • pp.179-194
    • /
    • 2007
  • The design and analysis of satellite power subsystem is an important driver for the mass, size, and capability of the satellite. Every other satellite subsystem is affected by the power subsystem, and in particular, important issues such as launch vehicle selection, thermal design, and structural design are largely influenced by the capabilities and limitations of the power system. This paper introduces a new electrical power subsystem design program for the rapid development of LEO satellite and shows an example of design results using other LEO satellite design data. The results shows that the proposed design program can be used the optimum sizing and the analytical prediction of the on-orbit performance of satellite electrical power subsystem.

다목적실용위성 2호기의 전력용량 및 태양전지 어레이 초기 설계

  • Jang, Seong-Su;Jang, Jin-Baek;Lee, Sang-Gon;Sim, Eun-Seop
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.72-83
    • /
    • 2002
  • Required power and solar array sizing of KOMPSAT-2 have been analyzed by ASTRIUM and KARI in November, 2000. There are Electrical Power Subsystem(EPS) design discrepancies between ASTRIUM and Korea Aerospace Research Institute(KARI) according to heritage program, EPS operation concepts, power source and the characteristic of the electrical boxes. To design the power system of KOMPSAT-2, ASTRIUM has used the EPS design of the CHAMP and GlobalStar program. But SSTI, TOMS-EP and KOMPSAT-1's design concepts has been used for KOMPSAT-2 EPS design by the KARI. To get the design conclusion, there are many trade-off meetings for the EPS sizing using each sides' heritage program and EPS operation concept. And the EPS design factors and approaching methods have been reviewed and discussed. In addition the EPS design results from ASTRIUM and KARI are summarized in this paper.

  • PDF