• Title/Summary/Keyword: PPF control

Search Result 98, Processing Time 0.036 seconds

Effects of Light-emitting Diodes on In Vitro Growth of Virus-free Sweet Potato Plantlets (LED가 고구마 바이러스 무병묘의 기내 생장에 미치는 영향)

  • Yoo, Kyoung-Ran;Lee, Seung-Yeob
    • Horticultural Science & Technology
    • /
    • v.35 no.4
    • /
    • pp.490-498
    • /
    • 2017
  • The in vitro growth of virus-free sweet potato [Ipomoea batatas (L.) Lam.] plantlets was investigated under different light sources: fluorescent lamp (control); red (660 nm), blue (460 nm), white light-emitting diodes (LED), and two mixtures of blue and red LED (R:B = 8:2, and 7:3). Single node explants (10 mm) of three cultivars ('Matnami', 'Shincheonmi', and 'Yeonhwangmi') were cultured on Murashige and Skoog medium supplemented with $0.2mg{\cdot}L^{-1}$ 6-benzyladenine for 4 weeks. Explants were exposed to $150{\pm}5{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ photosynthetic photon flux at a distance of 20 cm, constant temperature of $25^{\circ}C$, and under 16/8-h (day/night) photoperiod. Using the same method, the in vitro growth of 10 cultivars under red LED was also compared. After 3 weeks, vine length was highest in plantlets cultured under red LED, and lowest in plantlets cultured under blue LED. Fresh and dry weights were also greatest in plantlets cultured under red LED. Compared to the control, vine thickness was significantly higher in plantlets grown under white LED and the 7:3 R:B LED mixture. Significant differences were observed among the 10 cultivars grown under red LED. 'Matnami', 'Shincheonmi', and 'Shinhwangmi' all had excellent vine lengths, and fresh and dry weights. Compared to the control, vine elongation of sweet potato plantlets was most effective under red LED, and culture duration was about 1 week shorter.

Effect of Vapor Pressure Deficit on the Evapotranspiration Rate and Graft-taking of Grafted Seedling Population under Artificial Lighting (인공광하에서 접목묘 개체군의 증발산속도와 활착에 미치는 포차의 영향)

  • Yong Hyeon Kim;Chul Soo Kim;Ji Won Lee;Sang Gyu Lee
    • Journal of Bio-Environment Control
    • /
    • v.10 no.4
    • /
    • pp.232-236
    • /
    • 2001
  • Four air temperature levels of 23, 25, 27 and 29$^{\circ}C$, three humidity levels of 85, 90 and 95% R.H. at photosynthetic photon flux (PPF) of 50 $\mu$mol.m$^{-2}$ .s$^{-1}$ were provided to investigate the effect of vapor pressure deficit on the evapotranspiration rate (EVTR) and graft-taking of watermelon grafted seed-increase. Thus EVTR of grafted seedlings increased with increasing air temperature at high humidity of 95%R.H. At relatively low humidity of 85% R.H., grafted seedlings showed a high EVTR and some wilting of scions was observed at this condition. This result would be ascribed to the low supply of water to vascular bundles according to the insufficient joining of scions and rootstocks. Differences in EVTR between 90% R.H. and 95% R.H. were not observed. Grafted seedlings showed high graft-taking at high relative humidity. Relative humidity had highly influenced to the graft-taking as compared to the air temperature. Graft-taking increased with decreasing vapor pressure deficit. Graft-taking greater than 90% was found at vapor pressure deficit less than 0.4kPa which could be obtained at humidity higher than 90% R.H. Therefore it is required to control the humidity higher than 90% R.H. for suppressing EVTR of grafted seedlings and preventing some wilting of scoins and thus enhancing the graft-taking of grafted seedlings.

  • PDF

Growth and Tuber Yield of Sweet Potato Slips Grown under Different Light-Emitting Diodes (LED 광질에 따른 고구마의 묘소질 및 괴근 수량성)

  • Lee, Na Ra;Lee, Seung Yeob
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.356-363
    • /
    • 2014
  • This work was conducted to investigate the field growth and yield of the sweetpotato (Ipomoea batatas) slips grown under different light emitting diodes (LEDs). Sweet potato cuttings of 3 cultivars ('Matnami', 'Shinhwangmi', and 'Yeonhwangmi') were cultivated under fluorescent lamp (FL) and several LEDs (PPF $150{\pm}5{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ at 20cm distance) in deep flow culture system for 20 days. The plants were acclimatized under sunlight for 10 days, and then cuttings (30cm length) were planted with $75{\times}25cm$ planting density on June 10th, covered with black vinyl film during growth period. Length and diameter of vine, number of root were excellent in the red plus blue (7:3) LED than the other treatments. At 30 days after planting, the survival rate in red plus blue (7:3) LED was significantly higher than that in FL and red LED, and it was not different among cultivars. Vine length, vine diameter, and number of node were not significant among LED light qualities and cultivars. After 120 days in the field cultivation, vine length, vine diameter, number of node, number of branch, and fresh weight of shoot were not significant among LED light qualities, but those except the number of branch showed significant differences among cultivars. Yield characteristics among LED light colors were not significant, but weight of storage root per plant, mean weight of storage root, and yield showed significant differences among cultivars. The yield per 10a in 'Matnami', and 'Yeonhwangmi' was significantly higher than that in 'Shinhwangmi'.

Development of Design Technology of Korean Style Air-Inflated Double-Layer Plastic Greenhouse (한국형 공기주입 이중피복 플라스틱온실의 설계기술 개발)

  • Lee, Hyun-Woo;Sim, Sang-Youn;Nam, Hyo-Seok;Nam, Sang-Woon;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.185-191
    • /
    • 2009
  • The construction of experimental greenhouses, operating test, and analysis on variation of different environment factors were conducted to provide fundamental data for design of Korean style air-inflated double-layer plastic greenhouse. The development of technology of attaching plastic to the structure and fasteners to be able to keep airtight was required in order to maintain proper static pressure in air space of double layer coverings. The insulation effect of air inflated greenhouse was better than conventional type. The temperature of arch type roof was greater about $2^{\circ}C$ than peach type roof in air inflated greenhouse. It was recommended that the plastic should be attached at the edges without clearance length in order to ease installation and raise airtightness of double layer coverings. The transmittance of arch type roof was greater than peach type in air inflated one span greenhouse. The transmittance of air inflated greenhouse was greater than conventional type due to frame ratio and distance between double layers in three span greenhouse. The condensation occurred on conventional type greenhouse was more than air inflated type. It was required to examine for a long time in order to analyze it quantitatively.

Seedling Quality and Early Yield after Transplanting of Paprika Nursed under Light-emitting Diodes, Fluorescent Lamps and Natural Light (발광다이오드, 형광등 및 자연광 하에서 육묘된 파프리카의 묘소질 및 정식 후 초기 수량)

  • Lee, Jae Su;Lee, Hye In;Kim, Yong Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.21 no.3
    • /
    • pp.220-227
    • /
    • 2012
  • This study was conducted to analyze the seeding quality of paprika and the growth and early yield after transplanting of paprika nursed under artificial light and natural light. In this study, blue LED, red LED, and white fluorescent lamps (FL) were used as artificial lighting sources. Photoperiod, average photosynthetic photon flux, air temperature, and relative humidity in a closed transplants production system (CTPS) were maintained at 16/8 h, $204{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, 26/$20^{\circ}C$, and 70%, respectively. Leaf length, leaf width, leaf area, top fresh weight and dry weight of paprika seedlings, and chlorophyll content in paprika leaves nursed under LED and fluorescent lamps for 21 days after experiment were significantly affected by light treatments. As compared with the control (white FL), leaf area of paprika grown under blue LED, red LED, and natural light was decreased by 63%, 63%, and 28%, respectively. Top dry weight of paprika grown under blue LED, red LED, and natural light was 64%, 50%, and 22%, respectively, compared with the control. Number of leaves on 18 days after transplanting showed with red LED, blue LED, and natural light by 86%, 84%, and 48%, respectively, compared with the control. On 114 days after transplanting, paprika nursed under blue LED and red LED had relatively short plant height. This result might be caused that the elongation of its internodes was suppressed by the illumination of sole blue or red light. Average number of fruits per plant harvested during 4 weeks after first harvest was 3.5 with red LED, 3.3 with blue LED, 1.0 with natural light, and 2.2 with control, respectively. Early yield of paprika nursed under red LED, blue LED, natural light, and control were 453 g/plant, 403 g/plant, 101 g/plant, and 273 g/plant, respectively. Larger fruit of 136 g was harvested with red LED treatment. Even though the early yield of paprika was greatly increased with artificial lighting, but total yield was almost similar as the harvest period after transplanting in greenhouses was lengthened. From the above results, we could understand that paprika nursed under white FL, blue LED, and red LED showed good growth after transplanting and was early harvested by a week as compared to the natural light. Therefore, the white FL, blue LED, and red LED as the artificial lighting sources in CTPS could be strategically used to enhance the seedling quality, to shorten the harvest time, and to increase the yield of paprika.

Weed Occurrence and Yield of Rice in Transplanting Rice Culture with Paper Mulching (종이멀칭 이앙재배에서 잡초발생과 벼의 생육 및 수량)

  • Lee, B.W.;Cui, R.X.;Lee, H.L.
    • Korean Journal of Weed Science
    • /
    • v.17 no.4
    • /
    • pp.368-374
    • /
    • 1997
  • Investigated ware the decomposition of mulch paper, weed occurrence, and rice growth and yield in transplanting rice culture with paper mulching in 1996 and 1997. The mulch paper were developed from domestic old corrugated container. In the experiment of 1996 where 25 percent of nitrogen fertilizer was applied as tillering fertilizer at 15 days after transplanting, it took about 28 to 40 days for the mulch paper to reach 50 percent decomposition according to types of mulch paper and fertilizer amount. The decomposition was faster in 18kg N/10a fertilization plot than in 12kg N/10a fertilization plot, and slower in the mulch paper treated with polyamidepolyamine epichlorohydrin resin(PPE) for the reinforcement of wet strength than in the mulch paper without PPE. In the experiment of 1997 where nitrogen fertilizer was not applied at tillering stage and instead 70 percent of nitrogen fertilizer was supplied as basal fertilizer, it took more than 42 days for the mulch paper(PPF treated) to reach 50 percent decomposition. Paper mulching was found to be very effective in controlling the paddy weeds at early stage of rice growth, but the efficacy, of weed control decreased especially in the mulch paper without PPE at later stage of rite growth due to the occurrence of Ludwigia prostrata in 1996. Few weeds occurred even in non-mulched plot without herbicide in 1997, rending difficulties in evaluating the efficacy of mulch paper in weed control, However, it could be deduced from the durability of mulch paper that paper mulching would have had sufficient efficacy of weed control. Rice yield was only 185kg/10a in the plot without mulching and weed control, but 657kg/10a and 771kg/10a in the paper(PPE treated) mulching plot with 12kgN/10a and 18kgN/10a, respectively, in 1996. The paper mulching plot showed rice yield similar to the weed control plot with herbicide in 1997. It would be concluded that paper mulching could ensure effective weed control and as high yield as the conventional rice cultivation with herbicidal weed control if the corresponding amount of basal nitrogen fertilizer is increased instead of omitting the nitrogen fertilizer at tillering stage.

  • PDF

Growth and Anthocyanins of Lettuce Grown under Red or Blue Light-emitting Diodes with Distinct Peak Wavelength (상이한 피크파장의 적색광 및 청색광 발광다이오드 조사에 따른 상추의 생장 및 안토시아닌)

  • Lee, Jae Su;Kim, Yong Hyeon
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.330-339
    • /
    • 2014
  • Growth and anthocyanins of lettuce (Lactuca sativa L., 'Mid-season') grown under LED lamps with blue light in the range of 430-470 nm or with red light in the range of 630-670 nm were analyzed in this study. Cool-white fluorescent light was used a s the control. P hotosynthetic photon flux, p hotoperiod, air temperature, relative humidity, and $CO_2$ concentration in a closed plant production system were $201{\pm}2\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, 16/8 hours (day/night), $22/18^{\circ}C$, 70%, and $400{\mu}mol{\cdot}mol^{-1}$, respectively. At 21 days after light quality treatment, growth characteristics and anthocyanins content of lettuce as affected by the peak wavelength of blue or red LED were significantly different. Among peak wavelengths treated in this stusy, R1 treatment (peak wavelength 634 nm) and R6 treatment (peak wavelength 659 nm) were effective for increasing leaf width, leaf area, shoot fresh weight, and photosynthetic rate of lettuce. B5 treatment (peak wavelength 450 nm) and B4 treatment (peak wavelength 446 nm) increased the anthocyanins concentration and chlorophyll content in lettuce leaves, respectively. Anthocyanins in lettuce leaves increased linearly with decreasing hue value of leaf color and with increasing SPAD value of lettuce leaves. From these results, it was concluded that the red LED with peak wavelengths of 634 nm and 659 nm and the blue LED with peak wavelengths of 450 nm can be used as potential light spectra for increasing the yield and anthocyanins accumulation of leafy vegetable.

Changes in Transpiration Rates and Growth of Cucumber and Tomato Scions and Rootstocks Grown Under Different Light Intensity Conditions in a Closed Transplant Production System (식물공장형육묘시스템 내 광량에 따른 오이와 토마토 접수 및 대목의 증발산량 및 생육 변화)

  • Park, Seon Woo;An, Sewoong;Kwack, Yurina
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.399-405
    • /
    • 2020
  • Recently, it is difficult to produce uniform scions and rootstocks with high quality in a greenhouse due to weather extremes. The closed transplant production system is useful for producing scions and rootstocks with desirable morphological characteristics by environment control regardless of weather outside. In this study, we investigated transpiration rates and growth of cucumber and tomato scions and rootstocks grown under different light intensity conditions for precise irrigation control in a closed transplant production system. Hanging system to measure continuously the weight of plug tray consisting of seedlings and substrate with load-cell was installed in each growing bed. Using this system, we confirmed initial wilting point of cucumber and tomato seedlings, and conducted subirrigation when moisture content of substrate was not below 50%. The irrigation time of cucumber scions and rootstocks were 7 and 6 days after sowing, respectively. In tomato scions and rootstocks grown under PPF (photosynthetic photon flux) 300 μmol·m-2·s-1, the irrigation time were 5, 8, 11, and 13 days after sowing. Increasing light intensity increased transpiration rates and differences of transpiration rates by light intensity was higher in tomato seedlings. The growth of cucumber and tomato seedlings was promoted by increasing light intensity, especially, hypocotyl elongation and stem thickening was affected by light intensity. Cumulative transpiration rate of plug tray in cucumber and tomato seedlings was increased by increasing light intensity, and daily transpiration rate per seedling was regressed by 1st-order linear equation with high correlation coefficient. Estimation of transpiration rates by weighing continuously plug tray of vegetable seedlings can be useful to control more accurately irrigation schedule in a closed transplant production system.