DOI QR코드

DOI QR Code

Growth and Tuber Yield of Sweet Potato Slips Grown under Different Light-Emitting Diodes

LED 광질에 따른 고구마의 묘소질 및 괴근 수량성

  • Lee, Na Ra (Institute of Life Science and Natural Resources, Wonkwang University) ;
  • Lee, Seung Yeob (Institute of Life Science and Natural Resources, Wonkwang University)
  • 이나라 (원광대학교 생명자원과학연구소) ;
  • 이승엽 (원광대학교 생명자원과학연구소)
  • Received : 2014.08.12
  • Accepted : 2014.12.08
  • Published : 2014.12.31

Abstract

This work was conducted to investigate the field growth and yield of the sweetpotato (Ipomoea batatas) slips grown under different light emitting diodes (LEDs). Sweet potato cuttings of 3 cultivars ('Matnami', 'Shinhwangmi', and 'Yeonhwangmi') were cultivated under fluorescent lamp (FL) and several LEDs (PPF $150{\pm}5{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ at 20cm distance) in deep flow culture system for 20 days. The plants were acclimatized under sunlight for 10 days, and then cuttings (30cm length) were planted with $75{\times}25cm$ planting density on June 10th, covered with black vinyl film during growth period. Length and diameter of vine, number of root were excellent in the red plus blue (7:3) LED than the other treatments. At 30 days after planting, the survival rate in red plus blue (7:3) LED was significantly higher than that in FL and red LED, and it was not different among cultivars. Vine length, vine diameter, and number of node were not significant among LED light qualities and cultivars. After 120 days in the field cultivation, vine length, vine diameter, number of node, number of branch, and fresh weight of shoot were not significant among LED light qualities, but those except the number of branch showed significant differences among cultivars. Yield characteristics among LED light colors were not significant, but weight of storage root per plant, mean weight of storage root, and yield showed significant differences among cultivars. The yield per 10a in 'Matnami', and 'Yeonhwangmi' was significantly higher than that in 'Shinhwangmi'.

몇가지 LED 광질이 고구마 바이러스 무병묘의 생장과 포장생육 및 수량에 미치는 영향을 조사하였다. '신황미', '연황미', '맛나미' 등 3품종의 바이러스 무병묘를 20일간 담액수경 재배하여, 자연광하에서 10일간 순화시켜 30cm 크기의 삽수를 $75{\times}25cm$로 6월 10일 정식하여 흑색비닐로 멀칭재배하였다. LED 광질은 형광등(40W)을 대조구로 하여 적색(660nm), 청색(460nm), 적+청 8:2 및 적+청 7:3 혼합광을 사용하였다. 묘소질은 적+청(7:3) 혼합 LED에서 줄기신장, 줄기두께, 잎수 및 뿌리발달 등이 양호하여 건묘육성에 가장 효과적이었다. 정식 30일후, 포장 생존율은 적:청(7:3) 혼합 LED에서 형광등과 적색 LED보다 유의하게 높았으며, 품종간 차이는 없었다. 줄기길이, 줄기두께, 마디수 등의 지상부 생육특성도 LED 광질 및 품종간에 유의한 차이가 없었다. 정식 120일후 지상부 생육특성에서도 줄기길이, 줄기두께, 마디수, 곁가지수, 생체중 등에서 LED 광질에 따른 유의성은 인정되지 않았으며, 줄기길이, 마디수, 줄기두께, 생체중 등에서 품종간에 유의한 차이를 보였다. 주당평균중, 평균괴근중 및 수량 등은 LED 광질에 따른 차이가 없었으며, 품종간에는 유의한 차이를 보였다. 품종간 수량은 '맛나미'와 '연황미'에서 '신황미'보다 유의하게 높았다.

Keywords

References

  1. Akoyunoglou, G. and H. Anni. 1984. Blue light effect on chloroplast development in higher plants. In : Senger, H.(ed), Blue Light Effects in Biological Systems. p. 397-405. Springer-Verlag, Berlin.
  2. Bourget, C.M. 2008. An Introduction to Light-emitting Diodes. HortScience 43:1944-1946.
  3. Choi, Y.W., C.K. Ahn, J.S. Kang, B.G. Son, and I.S. Choi. 2003. Growth, photomorphogenesis, and photosynthesis of Perilla grown under red, blue light emitting diodes and light intensities. J. Kor. Soc. Hort. Sci. 44:281-286.
  4. Chung M.N. 2008. A study on the virus detection methods and virus-free plant mass production in sweetpotato. Ph.D. thesis. Chonnam National University, Gwangju, Korea.
  5. Cosgrove, D.J. 1981. Rapid suppression of growth by blue light. Plant Physiol. 67:584-590. https://doi.org/10.1104/pp.67.3.584
  6. Gutierrez, D.L., S. Fuentes, and L. Salazar. 2003. Sweetpotato virus disease (SPVD): distribution, incidence, and effect on sweetpotato yield in Peru. Plant Dis. 87:297-302. https://doi.org/10.1094/PDIS.2003.87.3.297
  7. Heo, J., C. Lee, D. Chakrabarty, and K. Paek. 2002. Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a Light-Emitting Diode(LED). Plant Growth Regul. 38: 225- 230. https://doi.org/10.1023/A:1021523832488
  8. Kim, E.Y., K.H. Son, S.Y. Hwang, S.S. Park, B.J. Park, and M.M. Oh. 2013. Growth and yield after transplanting of cherry tomato seedlings cultivated under various combinations of blue and red LEDs. Kor. J. Hort. Sci. Technol. 31(SUPPL. II):78-78.
  9. Kim, H.R. and Y.H. You. 2013. Effects of red, blue, white, and far-red LED source on growth responses of Wasabia japonica seedlings in plant factory. Kor. J. Hort. Sci. Technol. 31:415-422.
  10. KOSIS (Korean Statistical Information Service). 2013. http://kosis.kr/
  11. Li, H., Z. Xu, and C. Tang. 2010. Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro. Plant Cell Tiss. Org. Cult. 103:155-163. https://doi.org/10.1007/s11240-010-9763-z
  12. Nhut, D.T., T. Takamura, H. Watanabe, K. Okamoto, and M. Tanaka. 2003. Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes (LEDs). Plant Cell Tiss. Org. Cult. 73: 43-52. https://doi.org/10.1023/A:1022638508007
  13. Park, K.W. and Y.S. Kim. 1998. Hydroponics in horticulture. Academybook, Seoul.
  14. Rural Development Administration (RDA). 2006. Cultivation of sweet potato. Standard textbook for agronomy-28. RDA, Suwon, Korea.
  15. Saebo A., Krekling T. and Appelgren M. 1995. Light quality affects photosynthesis and leaf anatomy of brich plantlets in vitro. Plant Cell Tiss. Org. Cult. 41:177-185. https://doi.org/10.1007/BF00051588
  16. Senger, H. 1982. The effect of blue light on plant and microorganisms. Photochem. Photobiol. 35:911-920. https://doi.org/10.1111/j.1751-1097.1982.tb02668.x
  17. Song, H.A., K.C. Kim, and S.Y. Lee. 2012. Effect of virus-free plant and subsoiling reversion soil for reduction of injury by continuous cropping of sweet potato. Kor. J. Crop Sci. 57:254-261. https://doi.org/10.7740/kjcs.2012.57.3.254
  18. Teow, C.C., V. Truong, R.F. McFeeters, R.L. Thompson, K.V. Pecota, and G.C. Yencho. 2007. Antioxidant activities, phenolic and $\beta$-carotene contents of sweet potato genotypes with varying flesh colours. Food Chem. 103:829-838. https://doi.org/10.1016/j.foodchem.2006.09.033
  19. Untiveros, M., S. Fuentes, and L.F. Salazar. 2007. Synergistic interaction of sweet potato chlorotic stunt virus (Crinivirus) with carla-, cucumo-, ipomo-, and potyviruses infecting sweet potato. Plant Dis. 91:669-676. https://doi.org/10.1094/PDIS-91-6-0669
  20. Villordon, A., D.R. LaBonte, N. Firon, Y. Kfir, E. Pressman, and A. Schwartz. 2009. Characterization of adventitious root development in sweetpotato. HortScience 44:651-655.
  21. Yoo K.R. and S.Y. Lee. 2013. Growth characteristics and yield of sweet potato cultivars between virus-free and farmer's slips in late season cultivation. Kor. J. Crop Sci. 58:43-49. https://doi.org/10.7740/kjcs.2013.58.1.043
  22. Yoo, K.R., S.Y. Lee, and J.H. Bae. 2012. Effects of nutrient solution composition and cutting size on growth of virusfree sweet potato plant in nutrient film technique. Kor. J. Hort. Sci. Technol. 30:686-693.