• Title/Summary/Keyword: PPCC 검정

검색결과 9건 처리시간 0.024초

Derivation of Probability Plot Correlation Coefficient Test Statistics and Regression Equation for the GEV Model based on L-moments (L-모멘트 법 기반의 GEV 모형을 위한 확률도시 상관계수 검정 통계량 유도 및 회귀식 산정)

  • Ahn, Hyunjun;Jeong, Changsam;Heo, Jun-Haeng
    • Journal of Korean Society of Disaster and Security
    • /
    • 제13권1호
    • /
    • pp.1-11
    • /
    • 2020
  • One of the important problem in statistical hydrology is to estimate the appropriated probability distribution for a given sample data. For the problem, a goodness-of-fit test is conducted based on the similarity between estimated probability distribution and assumed theoretical probability distribution. Probability plot correlation coefficient test (PPCC) is one of the goodness-of-fit test method. PPCC has high rejection power and its application is simple. In this study, test statistics of PPCC were derived for generalized extreme value distribution (GEV) models based on L-moments and these statistics were suggested by the multiple and nonlinear regression equations for its usability. To review the rejection power of the newly proposed method in this study, Monte Carlo simulation was performed with other goodness-of-fit tests including the existing PPCC test. The results showed that PPCC-A test which is proposed in this study demonstrated better rejection power than other methods, including the existing PPCC test. It is expected that the new method will be helpful to estimate the appropriate probability distribution model.

A Study on Estimation of Probability Plot Correlation Coefficient Considering the Skewness for GLO distribution (GLO분포를 대상으로 왜곡도 계수를 고려한 확률도시 상관계수 검정통계량 추정)

  • Ahn, Hyunjun;Shin, Hongjoon;Kim, Sooyoung;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.39-39
    • /
    • 2015
  • 극치 수문(Hydrologic extremes)분야에서는 수문자료의 분포에 따라 Gumbel, GEV, 그리고 GLO 분포와 같은 다양한 확률통계 분포형이 존재한다. GEV와 GLO 분포형의 경우 Gumbel 분포형과 달리 형상매개변수가 포함된 3변수 분포형으로써 이상 기후 현상으로 인한 잦은 극치 수문사상을 표현하는데 좀 더 유연한 것으로 알려져 있다. 특히 GLO 분포형의 경우 영국에서 홍수빈도해석 시 적정분포형으로 선정된바 있다(Institute of Hydrology, 1999). 다양한 분포형 중에서 표본 자료를 대표할 수 있는 분포형을 선정하는 통계적 기법이 적합도 검정이다. 적합도 검정에는 $x^2$-검정, Cramer von-Mises 검정, Kolmogorov-Smirnov 검정, PPCC(probability plot correlation coefficient, 확률도시 상관계수)검정 등이 있으며 그 중 PPCC 검정은 이용방법이 간편하면서도 뛰어난 기각능력을 보이는 것으로 알려져 있다. 본 연구에서는 극치 수문분야에서 널리 이용되고 있는 GLO 분포형을 대상으로 자료의 왜곡도 영향을 고려할 수 있는 확률도시 상관계수 검정의 검정통계량을 추정하여 보았다.

  • PDF

Using Various Order Probability Weighted Moments for the Parameter Estimation of Appropriate Distribution Functions (여러 차수의 확률 가중 모멘트를 이용한 적정 분포함수의 매개변수 추정)

  • Lee, Kil Seong;Kim, Ji Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.635-639
    • /
    • 2004
  • 댐과 같은 구조물의 설계시 큰 강우량에 내한 분포함수의 적합성을 놀일 필요가 있다. 이에 대해 Wang (1997a and b)은 큰 설계량에 내한 적합성을 놀이기 위해 LH 모멘트와 고차 PWM(higher Probability Weighted Moments)방법을 제안하였다. 따라서 본 연구에서는 우리나라의 자 지역별로 대표적인 4개 지점의 일 강우량 자료를 사용하여 제안된 고차 PWM 방법의 적용성을 살펴보았다. 그 과정으로 가장 낮은 차수인 일반적인 PWM 방법과 더 높은 차수의 PWM 방법을 이용하여, GEV(Generalized Extreme Value) 분포와 Gumbel 분포에 대한 매개변수를 추정한 후 이 추정치를 확률지에 실측치와 함께 도시하여 결과를 비교하였다. 그리고 PPCC(Probability Plot Correlation Coefficient) 적합도 검정결과를 통해 추정된 매개변수의 적합성을 확인하였다.

  • PDF

Frequency Analysis of Rainfall Data Using Advanced GEV Distribution (개선된 GEV 분포를 이용한 강우량 빈도분석)

  • Lee, Kil-Seong;Kang, Won-Gu;Park, Kyung-Shin;Sung, Jin-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.1321-1326
    • /
    • 2009
  • 강우는 수자원 확보 측면에서 근원이 되는 요소이다. 그러므로 정확한 확률강우량 산정은 미래의 가용 수자원량을 예측하는데 있어 중요한 사항중 하나이며 무엇보다 신중한 결정이 요구된다. 또한 하천의 범람에 의한 침수를 예방하는 수공구조물 등의 설계에 있어서는 신뢰할 수 있는 확률강우량 산정이 선행되어야 한다. 본 연구에서는 최근 우리나라 극치강우확률분포로서 많은 연구가 이루어지고 있는 GEV 분포(GEV-O)를 기반으로 위치 매개변수에 시간의 함수를 고려한 개선된 GEV 분포(GEV-A)를 이용하여 서울지점에 적용함으로서 GEV-O 분포에 의한 확률강우량과 GEV-A 분포로 산정된 확률강우량을 비교 검토하였다. 먼저 임의의 난수 발생을 통해 최우도추정법과 확률가중모멘트법으로 매개변수를 추정한 GEV-O 분포와 최우도추정법으로 매개변수를 추정한 GEV-A 분포의 상대평균제곱근오차 (R-RMSE)를 계산하여 비교함으로서 GEV-A 분포의 효율성을 판단하였다. 사례연구는 1961년부터 2008년까지 서울강우관측소에서 측정된 연최대 1일 강우량으로 하였으며 $X^2$-검정, PPCC-검정으로 적합도 검정을 실시하였다. 강우빈도분석 결과 GEV-A 분포가 GEV-O 분포로 산정된 결과 보다 대체로 재현기간 200년 이상일 경우, 과다 산정되는 경향을 보였다. 추후 개선된 GEV 분포를 서울 인근 지점에 적용함으로서 지역빈도해석(Regional Frequency Analysis)을 실행하기 위한 연구가 진행되어야 할 것이다. 또한 확률홍수량 산정 등에도 개선된 GEV 분포를 이용함으로서 보다 정확하고 신뢰성 있는 확률수문량을 예측하여야 할 것이다.

  • PDF

Application of Jackknife Method for Determination of Representative Probability Distribution of Annual Maximum Rainfall (연최대강우량의 대표확률분포형 결정을 위한 Jackknife기법의 적용)

  • Lee, Jae-Joon;Lee, Sang-Won;Kwak, Chang-Jae
    • Journal of Korea Water Resources Association
    • /
    • 제42권10호
    • /
    • pp.857-866
    • /
    • 2009
  • In this study, basic data is consisted annual maximum rainfall at 56 stations that has the rainfall records more than 30years in Korea. The 14 probability distributions which has been widely used in hydrologic frequency analysis are applied to the basic data. The method of moments, method of maximum likelihood and probability weighted moments method are used to estimate the parameters. And 4-tests (chi-square test, Kolmogorov-Smirnov test, Cramer von Mises test, probability plot correlation coefficient (PPCC) test) are used to determine the goodness of fit of probability distributions. This study emphasizes the necessity for considering the variability of the estimate of T-year event in hydrologic frequency analysis and proposes a framework for evaluating probability distribution models. The variability (or estimation error) of T-year event is used as a criterion for model evaluation as well as three goodness of fit criteria (SLSC, MLL, and AIC) in the framework. The Jackknife method plays a important role in estimating the variability. For the annual maxima of rainfall at 56 stations, the Gumble distribution is regarded as the best one among probability distribution models with two or three parameters.

Application Study of Nonstationary GEV Model for Annual Maximum Precipitation Data using AICc and BIC (AICc와 BIC를 이용한 비정상성 GEV 모형의 적용)

  • Kim, Hanbeen;Kim, Sooyoung;Kim, Taereem;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.143-143
    • /
    • 2015
  • 기존의 빈도해석에서는 자료의 정상성을 가정하며, 이에 따라 적정모형 선정 시에 $x^2$ 검정이나 PPCC(Probability Plot Correlation Coefficient)검정과 같은 적합도 검정방법을 사용한다. 하지만 자료에서 경향성이 나타나거나 평균, 분산, 매개변수 등이 시간에 따라 변하는 등의 비정상성 현상들이 관측됨에 따라 비정상성 빈도해석에 관한 연구들이 활발히 진행되고 있다. 비정상성 빈도해석에서는 시간항과 같은 공변량이 포함된 매개변수를 가지는 비정상성 모형을 적용하게 되는데, 시간에 따라 매개변수가 계속 변하므로 매개변수에 따라 검정통계량이 고정되어 있는 기존의 적합도 검정방법의 적용이 어렵다. 따라서 비정상성 빈도해석의 적정 모형 선정에 적용할 수 있는 방법으로 최우도 함수에 기반한 모형 평가 방법인 AIC와 BIC가 추천되고 있으며 자료길이가 충분하지 않은 경우에는 AIC 대신하여 AICc의 사용이 추천되고 있다. 본 연구에서는 극치사상을 나타내는데 적합한 분포형인 GEV분포형의 위치, 규모 매개변수를 시간항으로 나타낸 다양한 비정상성 GEV모형에 대하여 Monte-Carlo 모의실험을 통해 AICc와 BIC의 적용성을 검토하였으며, 비정상성이 관측되는 실측 자료에 적용해보았다.

  • PDF

An Estimation of Probable Precipitation and an Analysis of Its Return Period and Distributions in Busan (부산지역 확률강수량 결정에 따른 재현기간 및 분포도 분석)

  • Lim, Yun-Kyu;Moon, Yun-Seob;Kim, Jin-Seog;Song, Sang-Keun;Hwang, Yong-Sik
    • Journal of the Korean earth science society
    • /
    • 제33권1호
    • /
    • pp.39-48
    • /
    • 2012
  • In this study, a statistical estimation of probable precipitation and an analysis of its return period in Busan were performed using long-term precipitation data (1973-2007) collected from the Busan Regional Meteorological Administration. These analyses were based on the method of probability weighted moments for parameter estimation, the goodness-of-fit test of chi-square ($x^2$) and the probability plot correlation coefficient (PPCC), and the generalized logistics (GLO) for optimum probability distribution. Moreover, the spatial distributions with the determination of probable precipitation were also investigated using precipitation data observed at 15 Automatic Weather Stations (AWS) in the target area. The return periods for the probable precipitation of 245.2 and 280.6 mm/6 hr with GLO distributions in Busan were estimated to be about 100 and 200 years, respectively. In addition, the high probable precipitation for 1-, 3-, 6-, and 12-hour durations was mostly distributed around Dongrae-gu site, all coastal sites in Busan, Busanjin and Yangsan sites, and the southeastern coastal and Ungsang sites, respectively.

Development of drought frequency analysis program (가뭄빈도해석 프로그램 개발)

  • Lee, Jeong Ju;Kang, Shin Uk;Chun, Gun Il;Kim, Hyeon Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.14-14
    • /
    • 2020
  • 일반적으로 수문빈도해석은 치수계획 수립에 이용되는 설계강수량, 계획홍수량 등을 산정하기 위해 연최대치계열 또는 연초과치계열 자료를 이용한 극치빈도해석을 수행하고, 확률분포의 우측꼬리(right tail) 부분을 이용하여 확장된 재현기간에 해당하는 확률수문량을 추정한다. 하지만 가뭄 관련 분석에서는 확률분포의 좌측꼬리(left tail) 부분은 이용해 확장된 재현기간별 확률수문량을 추정해야할 경우가 발생한다. 또한 물관리 실무에서 장 단기 운영계획 수립을 위해 이용하는 갈수빈도 유입량 산정 등에서도 평년보다 작은 수문량에 대한 빈도해석이 필요한 경우가 있다. 국가 가뭄정보분석센터에서는 기존에 K-water연구원에서 개발한 빈도해석 프로그램인 K-FAT의 분석모듈을 이용해 극소치계열 또는 갈수빈도 유입량 분석에 특화된 가뭄빈도해석 프로그램을 개발하였다. 본 프로그램은 GEV, Gumbel, Weibull 등 14개의 확률분포형을 포함하며, 모멘트법, 최우도법 및 L-모멘트법을 사용하여 매개변수를 추정한다. 적합도 검정의 경우 χ2, K-S, CVM, PPCC 및 수정 Anderson-Darling test를 이용하여 다각적인 검정을 할 수 있도록 하였다. 분석을 위한 입력 자료의 경우 사용자가 전처리를 통해 준비한 연최소치계열 등 연도별 시계열자료를 이용할 수 있으며, 일단위 및 월단위의 강수량 또는 댐 유입량 자료를 이용해 사용자가 원하는 기간의 누적강수량, 평균 유입량으로 변환할 수 있는 자료변환 기능을 추가하여 실무 활용성을 높였다. 또한 최적 확률분포 선정을 위해 참고할 수 있도록 AIC(Akaike information criteria)와 BIC(Bayesian information criteria) 분석이 포함되어 있으며, Bootstrap 기법 등을 이용한 불확실성 산정을 통해 추정 값의 신뢰구간을 표시하도록 하였다. 개발된 프로그램은 베타버전 시험배포를 거쳐 가뭄정보포털을 통해 배포할 예정이다.

  • PDF

Statistical Analyses of Soil Moisture Data from Polarimetric Scanning Radiometer and In-situ (Polarimetric Scanning Radiometer 와 In-situ를 이용한 토양수분 자료의 통계분석)

  • Jang, Sun Woo;Jeon, Myeon Ho;Choi, Minha;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제30권5B호
    • /
    • pp.487-495
    • /
    • 2010
  • Soil moisture is a crucial factor in hydrological system which influences runoff, energy balance, evaporation, and atmosphere. United States National Aeronautic and Space Administration (NASA) and Department of Agriculture (USDA) have established Soil Moisture Experiment (SMEX) since 2002 for the global observations. SMEX provides useful data for the hydrological science including soil moisture and hydrometeorological variables. The purpose of this study is to investigate the relationship between remotely sensed soil moisture data from aircraft and satellite and ground based experiment. C-band of Polarimetric Scanning Radiometer (PSR) that observed the brightness temperature provides soil moisture data using a retrieval algorithm. It was compared with the In-situ data for 2-30 cm depth at four sites. The most significant depth is 2-10 cm from the correlation analysis. Most of the sites, two data are similar to the mean of data at 10 cm and the median at 7 cm and 10 cm at the 10% significant level using the Rank Sum test and t-test. In general, soil moisture data using the C-band of the PSR was established to fit the Normal, Log-normal and Gumbel distribution. Soil moisture data using the aircraft and satellites will be used in hydrological science as fundamental data. Especially, the C-band of PSR will be used to prove soil moisture at 7-10 cm depths.