• 제목/요약/키워드: PPAR (Peroxisome proliferator-activated receptor)

검색결과 314건 처리시간 0.029초

Peroxisome proliferator-activated receptor $\alpha$(PPAR$\alpha$) and its clinical significance

  • 윤미정
    • 한국동물학회:뉴스레터
    • /
    • 제18권2호
    • /
    • pp.6-11
    • /
    • 2001
  • Peroxisome proliferator-activated receptor $\alpha$ (PPAR$\alpha$)에 대한 본격적인 연구는 고지혈증 치료제인 fibrate류의 약물들이 PPAR$\alpha$ activator로 작용한다는 사실이 밝혀짐으로써 크게 증대되었다. PPAR$\alpha$는 fibrate를 포함한 다양한 종류의 peroxisome proiferator (PP)에 의해 활성화되는데 이들을 쥐에 단기간 투여할 경우 간의 peroxisome수와 지 방산 산화효소의 유전자발현이 증가되고 장기간 투여 할 경우 간암을 발생시키지만, fibrate류의 약물들을 고지혈증 환자에게 투여 할 경우 간암을 발생시키지 않으므로써 PP에 대한 반응성에 있어서 species difference를 나타낸다 PPAR$\alpha$는 핵에 존재하는 orphan receptor로서 PP에 의해 활성화되어 9-cis-retinoic acid receptor(RXR)와 heterodimer를 이룬 후 target gene들의 upstream에 있는 peroxisome proliferator response element (PPRE)에 결합하여 target gene들의 발현을 조절한다. 지금까지 연구된 PPAR$\alpha$의 target gene들은 모두 lipid와 lipoprotein 대사를 조절하는 것으로 알려져 있으며, 이러 한 결과들을 기초로 lipid 대사 및 energy balance와 관련된 질병들 - 동맥경화증, 관상동맥질환, 비만, 제 2형 당뇨병 등에서 PPAR$\alpha$의 역할이 집중적으로 연구되고 있다. PPAR$\alpha$가 활성화되면 lipoprotein lipase와 HDL이 증가되고 apo C-III가 감소됨으로써 동맥경화증에 대한 예방적 기능을 나타내고, 몸무게를 감소시킴으로써 비만을 방지할 수 있으며, 인슐린 감수성을 증가시켜 제 2형 당뇨병의 치료효과를 가지는 것으로 보인다. 그러나 PPAR$\alpha$-null mouse에서는 이러한 효과들이 나타나지 않는 것으로 보아 이들 질병에서 PPAR$\alpha$가 중요한 역할을 하는 것으로 생각된다.

  • PDF

Peroxisome Proliferator-activated Receptor ${\gamma}$ Is Not Associated with Adipogenesis in Female Mice

  • Yoon, Mi-Chung;Jeong, Sun-Hyo
    • 대한의생명과학회지
    • /
    • 제14권3호
    • /
    • pp.139-146
    • /
    • 2008
  • The peroxisome proliferator-activated receptor ${\gamma}$ $(PPAR{\gamma})$ plays a central role in adipogenesis and lipid storage. The $(PPAR{\gamma})$ ligands, thiazolidinediones (TZDs), enhance in vitro adipogenesis in several cell types, but the role of the TZDs on in vivo adipogenesis is still poorly understood. To investigate how $PPAR{\gamma}$ ligand troglitazone regulates adipogenesis in female mice, we examined the effects of the troglitazone on adipose tissue mass, morphological changes of adipocytes, and the expression of $PPAR{\gamma}$ target and adipocyte-specific genes in low fat diet-fed female C57BL/6 mice. Administration of troglitazone for 13 weeks did not change body and total white adipose tissue weights compared with control mice. Troglitazone treatment also did not cause a significant decrease in the average size of adipocytes in parametrial adipose tissue although it is reported to increase the number of small adipocytes in male animals. Troglitazone did not affect the mRNA expression of $PPAR{\gamma}$ and its target genes as well as adipocyte-specific genes in parametrial adipose tissue. These results suggest that $PPAR{\gamma}$ does not seem to be associated with adipogenesis in females with functioning ovaries and that its inability to induce adipogenesis may be due to sex-related factors.

  • PDF

제 2형 당뇨병 및 당뇨 합병증의 발생과 Peroxisome Proliferator-Activated Receptor-$\gamma2$ C161T 유전자 다형성과의 관계 (The Association between Peroxisome Proliferator-Activated Receptor-Gamma C161T Polymorphism and Type 2 Diabetic Complications)

  • 이병철;안세영;두호경;안영민
    • 대한한방내과학회지
    • /
    • 제28권4호
    • /
    • pp.902-910
    • /
    • 2007
  • Objective : Peroxisome proliferator-activated receptor (PPAR)-gamma, a transcription factor in adipocyte differentiation, has important effects on insulin sensitivity, atherosclerosis, endothelial cell function and inflammation. Through these effects, PPAR-gamma2 might be involved with type 2 diabetes and vascular disease, including diabetic complications. Recently, it has been reported that the C161T polymorphism in the exon 6 of PPAR-gamma is associated with type 2 diabetes interacting with uncoupling protein 2 (UCP2) gene, and is associated with acute myocardial infarction. We studied the association of this polymorphism with type 2 diabetes and its complications, such as retinopathy, ischemic stroke, nephropathy and neuropathy in Korean non-diabetic and type 2 diabetic populations. Methods : Three hundred and thirty eight type 2 diabetic patients (retinopathy: 64, ischemic stroke: 67, nephropathy: 39 and neuropathy: 76) and 152 healthy matched control subjects were evaluated. The PPAR-gamma C161T polymorphism was analyzed by PCR-RFLP. Results : PPAR-gamma C161T genotype and allele frequency did not show significant differences between type 2 diabetic patients and healthy controls (T allele: 17.0 vs. 14.5, OR= 1.21, P=0.3188). In the analysis for diabetic complications, T allele in diabetic nephropathy was significantly higher than controls (P=0.0358). T allele in the ischemic stroke patients was also higher than healthy controls, although it had no significance (P=0.1375). Conclusions : These results suggest that the C161T polymorphism of the PPAR-gamma gene might be associated with diabetic nephropathy in type 2 diabetes.

  • PDF

A Simple ELISA for Screening Ligands of Peroxisome Proliferator-activated Receptor γ

  • Cho, Min-Chul;Lee, Hae-Sook;Kim, Jae-Hwa;Choe, Yong-Kyung;Hong, Jin-Tae;Paik, Sang-Gi;Yoon, Do-Young
    • BMB Reports
    • /
    • 제36권2호
    • /
    • pp.207-213
    • /
    • 2003
  • Peroxisome proliferator-activated receptors (PPARs) are orphan nuclear hormone receptors that are known to control the expression of genes that are involved in lipid homeostasis and energy balance. PPARs activate gene transcription in response to a variety of compounds, including hypolipidemic drugs. Most of these compounds have high affinity to the ligand-binding domain (LBD) of PPARs and cause a conformational change within PPARs. As a result, the receptor is converted to an activated mode that promotes the recruitment fo co-activators such as the steroid receptor co-activator-1 (SRC-1). Based on the activation mechanism of PPARs (the ligand binding to $PPAR{\gamma}$ induces interactions of the receptor with transcriptional co-activators), we performed Western blot and ELISA. These showed that the indomethacin, a $PPAR{\gamma}$ ligand, increased the binding between $PPAR{\gamma}$ and SRC-1 in a ligand dose-dependent manner. These results suggested that the in vitro conformational change of $PPAR{\gamma}$ by ligands was also induced, and increased the levels of the ligand-dependent interaction with SRC-1. Collectively, we developed a novel and useful ELISA system for the mass screening of $PPAR{\gamma}$ ligands. This screening system (based on the interaction between $PPAR{\gamma}$ and SRC-1) may be a promising system in the development of drugs for metabolic disorders.

Expression of Peroxisome Proliferator-Activated Receptor Gamma in Helicobacter Pylori-associated Mouse Gastric Cancer Tissue and Human Gastric Epithelial Cells.

  • Oh, Sang-yeon;Nam, Ki-taek;Jang, Dong-deuk;Yang, Ki-hwa;Hahm, Ki-baik;Kim, Dae-yong
    • 한국수의병리학회:학술대회논문집
    • /
    • 한국수의병리학회 2003년도 추계학술대회초록집
    • /
    • pp.11-11
    • /
    • 2003
  • Peroxisome proliferator-activated receptor (PPAR) is nuclear hormone receptors that can be activated by a variety of compounds. Two PPAR gamma isoforms are expressed at the protein level in mouse, gamma 1 and gamma 2. And PPAR gamma is intimately associated with cell differentiation and proliferation[1]. So aim of this study, investigated where express PPAR gamma in mouse gastric cancer tissues, including human gastric cancer cell lines and expression pattern of PPAR gamma. (omitted)

  • PDF

Peroxisome Proliferator-Activated Receptor α Facilitates Osteogenic Differentiation in MC3T3-E1 Cells via the Sirtuin 1-Dependent Signaling Pathway

  • Gong, Kai;Qu, Bo;Wang, Cairu;Zhou, Jingsong;Liao, Dongfa;Zheng, Wei;Pan, Xianming
    • Molecules and Cells
    • /
    • 제40권6호
    • /
    • pp.393-400
    • /
    • 2017
  • Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease characterized by lack of insulin and high glucose levels. T2DM can cause bone loss and fracture, thus leading to diabetic osteoporosis. Promoting osteogenic differentiation of osteoblasts may effectively treat diabetic osteoporosis. We previously reported that Sirtuin 1 (Sirt1), a $NAD^+$-dependent deacetylase, promotes osteogenic differentiation through downregulation of peroxisome proliferator-activated receptor (PPAR) ${\gamma}$. We also found that miR-132 regulates osteogenic differentiation by downregulating Sirt1 in a $PPAR{\beta}/{\delta}$-dependent manner. The ligand-activated transcription factor, $PPAR{\alpha}$, is another isotype of the peroxisome proliferator-activated receptor family that helps maintain bone homeostasis and promot bone formation. Whether the regulatory role of $PPAR{\alpha}$ in osteogenic differentiation is mediated via Sirt1 remains unclear. In the present study, we aimed to determine this role and the underlying mechanism by using high glucose (HG) and free fatty acids (FFA) to mimic T2DM in MC3T3-E1 cells. The results showed that HG-FFA significantly inhibited expression of $PPAR{\alpha}$, Sirt1 and osteogenic differentiation, but these effects were markedly reversed by $PPAR{\alpha}$ overexpression. Moreover, siSirt1 attenuated the positive effects of $PPAR{\alpha}$ on osteogenic differentiation, suggesting that $PPAR{\alpha}$ promotes osteogenic differentiation in a Sirt1-dependent manner. Luciferase activity assay confirmed interactions between $PPAR{\alpha}$ and Sirt1. These findings indicate that $PPAR{\alpha}$ promotes osteogenic differentiation via the Sirt1-dependent signaling pathway.

Molecular Characterization and Expression Analysis of the Peroxisome Proliferator Activated Receptor Delta (PPARδ) Gene before and after Exercise in Horse

  • Cho, Hyun-Woo;Shin, Sangsu;Park, Jeong-Woong;Choi, Jae-Young;Kim, Nam-Young;Lee, Woon-Kyu;Lee, Hak-Kyo;Song, Ki-Duk;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권5호
    • /
    • pp.697-702
    • /
    • 2015
  • While athletic abilities such as speed, endurance and recovery are important in the horse, genes related to these abilities have not been extensively investigated. Here, we characterized the horse peroxisome proliferator-activated receptor delta ($PPAR{\delta}$) gene and analyzed the expression of $PPAR{\delta}$ during exercise. $PPAR{\delta}$ is a known regulator of ${\beta}$-oxidation, muscle fiber transformation, and running endurance. Through evolutionary analysis using the synonymous and non-synonymous mutation ratio, it was revealed that positive selection occurred in the horse $PPAR{\delta}$ gene. Two important domains related to nuclear hormone receptors, C4 zinc finger and ligand binding domain, were also found to be conserved well in horse $PPAR{\delta}$. Horse $PPAR{\delta}$ was expressed ubiquitously in many tissues, but the expression level was various depending on the tissues. In the skeletal muscle, $PPAR{\delta}$ increased about 2.5 folds after 30 min of exercise. Unlike in muscle, the increase of $PPAR{\delta}$ expression was observed at 60 min but not 30 min of exercise in leukocytes. This finding might be useful for testing the endurance of horse using blood samples. Conclusively, the horse $PPAR{\delta}$ gene is evolutionarily conserved well and can be used as a biomarker of endurance in horse.

PPARγ Physiology and Pathology in Gastrointestinal Epithelial Cells

  • Thompson, E. Aubrey
    • Molecules and Cells
    • /
    • 제24권2호
    • /
    • pp.167-176
    • /
    • 2007
  • Peroxisome proliferator-activated receptor-gamma ($PPAR{\gamma}$) is expressed at very high levels in the gastrointestinal epithelium. Many of the functions of $PPAR{\gamma}$ in gastrointestinal epithelial cells have been elucidated in recent years, and a pattern is emerging which suggests that this receptor plays an important role in gastrointestinal physiology. There is also strong evidence that $PPAR{\gamma}$ is a colon cancer suppressor in pre-clinical rodent models of sporadic colon cancer, and there is considerable interest in exploitation of $PPAR{\gamma}$ agonists as prophylactic or chemopreventive agents in colon cancer. Studies in mice and in human colon cancer cell lines suggest several mechanisms that might account for the tumor suppressive effects of $PPAR{\gamma}$ agonists, although it is not in all cases clear whether these effects are altogether mediated by $PPAR{\gamma}$. Conversely, several reports suggest that $PPAR{\gamma}$ agonists may promote colon cancer under certain circumstances. This possibility warrants considerable attention since several million individuals with type II diabetes are currently taking $PPAR{\gamma}$ agonists. This review will focus on recent data related to four critical questions: what is the physiological function of $PPAR{\gamma}$ in gastrointestinal epithelial cells; how does $PPAR{\gamma}$ suppress colon carcinogenesis; is $PPAR{\gamma}$ a tumor promoter; and what is the future of $PPAR{\gamma}$ in colon cancer prevention?

Activation of peroxisome proliferator-activated receptor gamma induces anti-inflammatory properties in the chicken free avian respiratory macrophages

  • Mutua, Mbuvi P.;Steinaa, Lucilla;Shadrack, Muya M.;Muita, Gicheru M.
    • Journal of Animal Science and Technology
    • /
    • 제57권11호
    • /
    • pp.40.1-40.7
    • /
    • 2015
  • Background: Activation of peroxisome proliferator activated receptor gamma ($PPAR{\gamma}$) in the alveolar macrophages (AM) by selective synthetic $PPAR{\gamma}$ ligands, improves the ability of the cells to resolve inflammation. In birds, respiratory macrophages are known as free avian respiratory macrophages (FARM) and show distinct functional differences from AM. The effects of treating FARM with $PPAR{\gamma}$ ligands are unclear. Methods: FARM were harvested by lavage of chicken respiratory tract and their morphology assessed at microscopic level. The effects of $PPAR{\gamma}$ agonists on the FARM in vitro viability, phagocytic capacity and proinflammatory cytokine (TNF-${\alpha}$) production were assessed. Results: FARM had eccentric nucleus and plasma membrane ruffled with filopodial extensions. Ultrastructurally, numerous vesicular bodies presumed to be lysosomes were present. FARM treated with troglitazone, a selective $PPAR{\gamma}$ agonist, had similar in vitro viability with untreated FARM. However, treated FARM co-cultured with polystyrene particles, internalized more particles with a mean volume density of 41 % compared to that of untreated FARM of 21 %. Further, treated FARM significantly decreased LPS-induced TNF-${\alpha}$ production in a dose dependent manner. Conclusion: Results from this study show that $PPAR{\gamma}$ synthetic ligands enhance phagocytic ability of FARM. Further the ligands attenuate production of proinflammatory cytokines in the FARM, suggesting potential therapeutic application of $PPAR{\gamma}$ ligands in the management of respiratory inflammatory disorders in the poultry industry.

Biapigenin, Candidate of an Agonist of Human Peroxisome Proliferator-Activated Receptor γ with Anticancer Activity

  • Kim, Jin-Kyoung;Shin, So-Young;Lee, Jee-Young;Lee, So-Jung;Lee, Eun-Jung;Jin, Qinglong;Lee, June-Young;Woo, Eun-Rhan;Lee, Dong-Gun;Yoon, Do-Young;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권8호
    • /
    • pp.2717-2721
    • /
    • 2011
  • Peroxisome proliferator-activated receptors (PPARs) are a subfamily of nuclear receptors (NRs). Human peroxisome proliferator-activated receptor gamma (hPPAR${\gamma}$) has been implicated in the pathology of numerous diseases, including obesity, diabetes, and cancer. ELISA-based hPPAR${\gamma}$ activation assay showed that biapigenin increased the binding between hPPAR${\gamma}$ and steroid receptor coactivator-1 (SRC-1) by approximately 3-fold. In order to confirm that biapigenin binds to hPPAR${\gamma}$, fluorescence quenching experiment was performed. The results showed that biapigenin has higher binding affinity to hPPAR${\gamma}$ at nanomolar concentrations compared to indomethacin. Biapigenin showed anticancer activity against HeLa cells. Biapigenin was noncytotoxic against HaCa T cell. All these data implied that biapigenin may be a potent agonist of hPPAR${\gamma}$ with anticancer activity. We will further investigate its anticancer effects against human cervical cancer.