• Title/Summary/Keyword: PPAR${\alpha}$

Search Result 326, Processing Time 0.025 seconds

Dietary carnosic acid suppresses hepatic steatosis formation via regulation of hepatic fatty acid metabolism in high-fat diet-fed mice

  • Park, Mi-Young;Mun, Seong Taek
    • Nutrition Research and Practice
    • /
    • v.7 no.4
    • /
    • pp.294-301
    • /
    • 2013
  • In this study, we examined the hepatic anti-steatosis activity of carnosic acid (CA), a phenolic compound of rosemary (Rosmarinus officinalis) leaves, as well as its possible mechanism of action, in a high-fat diet (HFD)-fed mice model. Mice were fed a HFD, or a HFD supplemented with 0.01% (w/w) CA or 0.02% (w/w) CA, for a period of 12 weeks, after which changes in body weight, blood lipid profiles, and fatty acid mechanism markers were evaluated. The 0.02% (w/w) CA diet resulted in a marked decline in steatosis grade, as well as in homeostasis model assessment of insulin resistance (HOMA-IR) index values, intraperitoneal glucose tolerance test (IGTT) results, body weight gain, liver weight, and blood lipid levels (P < 0.05). The expression level of hepatic lipogenic genes, such as sterol regulating element binding protein-1c (SREBP-1c), liver-fatty acid binding protein (L-FABP), stearoyl-CoA desaturase 1 (SCD1), and fatty acid synthase (FAS), was significantly lower in mice fed 0.01% (w/w) CA and 0.02% (w/w) CA diets than that in the HFD group; on the other hand, the expression level of ${\beta}$-oxidation-related genes, such as peroxisome proliferator-activated receptor ${\alpha}$ (PPAR-${\alpha}$), carnitine palmitoyltransferase 1 (CPT-1), and acyl-CoA oxidase (ACO), was higher in mice fed a 0.02% (w/w) CA diet, than that in the HFD group (P < 0.05). In addition, the hepatic content of palmitic acid (C16:0), palmitoleic acid (C16:1), and oleic acid (C18:1) was significantly lower in mice fed the 0.02% (w/w) CA diet than that in the HFD group (P < 0.05). These results suggest that orally administered CA suppressed HFD-induced hepatic steatosis and fatty liver-related metabolic disorders through decrease of de novo lipogenesis and fatty acid elongation and increase of fatty acid ${\beta}$-oxidation in mice.

Inhibitory Effect of Cymbopogon Citratus Ethanol Extracts on Adipogenesis in 3T3-L1 Preadipocytes (레몬그라스 에탄올 추출물의 3T3-L1 지방세포 분화 억제효과)

  • Jo, Yong Seok;Ju, Sung Min;Hwang, Keum Hee;Kim, Min Sook;Kim, Kwang Sang;Jeon, Byung Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.33 no.1
    • /
    • pp.17-24
    • /
    • 2019
  • Cymbopogon citratus, commonly know as lemongrass, prossesses strong antioxidant, anti-tumor and anti-inflammatory properties. Howerver, its anti-obesity activity remains to be elucidated. This study investigated the effect of ethanol extract of Cymbopogon citratus on adipogenesis, and its underlying mechanism, in 3T3-L1 preadipocytes. The results demonstrated that ethanol extracts of Cymbopogon citratus effectively suppressed intercellular lipid accumulation at non-toxic concentrations, and was associated with the down-regulation of adipocyte-specific transcription factors, including $C/EBP{\alpha}$ and $PPAR{\gamma}$, and phosphorylation of $AMPK{\alpha}$. Furthermore, ethanol extracts of Cymbopogon citratus increased p21 and p21 expression, while the expression of CDK2, cyclin A and cyclin B1 was reduced. As a result, ethanol extracts of Cymbopogon citratus seems to induce G0/G1 cell cycle arrest of 3T3-L1 cells. On the other hand, ERK and Akt signaling pathways were not involved in anti-adipogenesis by ethanol extracts of Cymbopogon citratus. Taken together, theses results suggest that ethanol extracts of Cymbopogon citratus inhibits adipocyte differentiation in 3T3-L1 cells and can be used as a safe and efficient natural substance to manage anti-obesity.

Determination of Fat Accumulation Reduction by Edible Fatty Acids and Natural Waxes In Vitro

  • Issara, Utthapon;Park, Suhyun;Park, Sungkwon
    • Food Science of Animal Resources
    • /
    • v.39 no.3
    • /
    • pp.430-445
    • /
    • 2019
  • Natural edible waxes mixed with plant oils, containing high levels of unsaturated fatty acids (FAs), are known as oleogels. Oleogels are used for replacing saturated FAs in animal-derived food with unsaturated FAs. However, the health effects of edible waxes are not yet clearly defined. The purpose of this study was to investigate the effect of FAs and natural waxes on the adipogenesis in 3T3-L1 cells. The 3T3-L1 cells were differentiated and treated with FAs and waxes. These FAs [Palmitic acid (PA), Stearic acid (SA), Oleic acid (OA), Linoleic acid (LA), and Alpha-linolenic acid (ALA)] and waxes [beeswax (BW) and carnauba wax (CW)] were prepared at varying concentrations, and cell toxicity, triglyceride accumulation, lipid droplets size, and distribution inside of cells were determined. Adipogenic gene expression including $PPAR{\gamma}$, FASN, $C/EBP{\alpha}$, SREBP-1, and CPT-1 was determined. Results showed that increasing the concentration of FAs and waxes led to a decrease in the adipocyte cells viability and metabolic performance. SA showed the highest level of triglyceride accumulation (p<0.05), whereas ALA showed the lowest (p<0.05). Both BW and CW at 3.0 ppm showed significantly higher lipid accumulation than in the control and other groups (p<0.05). ALA had significantly downregulated adipogenic gene expression levels, excluding those of CPT-1, compared to the other treatment groups (p<0.05). Moreover, BW demonstrated similar adipogenic gene expression levels as ALA compared to CW. Consequently, ALA and BW may have health benefits by reducing adipogenesis and can be used in processed meat.

Low Lysine Treatment Increases Adipogenic Potential of Bovine Intramuscular Preadipocytes

  • Beloor, Jagadish;Kang, Hye Kyeong;Yun, Cheol-Heui;Kim, Sang Hoon;Moon, Yang Soo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.5
    • /
    • pp.721-726
    • /
    • 2009
  • The molecular mechanism of adipocyte differentiation has been well documented. However, the effect of specific nutrients such as lysine on adipocyte differentiation is poorly understood especially in ruminant animals. Therefore, the aim of the present study was to elucidate the influence of lysine on adipocyte differentiation and adipogenic genes in cultured bovine preadipocytes. The preadipocytes were treated with different concentrations of lysine (40, 160, 320 mg/L) or troglitazone (10 ${\mu}M$) for 2 days and then subsequently cultured in differentiation medium until day 6. Expression levels of $C/EBP{\alpha}$ were significantly higher (p<0.001) in 40 and 160 mg/L lysine-treated cells compared to 320 mg/L treatment. Though there was an increasing trend in $PPAR{\gamma}$ expression levels with the decreasing lysine concentration, the results were not significant. The preadipocyte factor (pref-1), expression significantly (p<0.001) reduced with decreasing lysine concentration. The Oil red O staining results were better in 40 mg/L treated cells compared to 160 and 320 mg/L lysine treated cells. Our overall results indicate that insufficient supply of lysine increases the adipogenic potential in bovine intramuscular preadipocytes.

Effect of Eicosapentaenoic Acid on Cellular Lipid Accumulation and Transcription Factors Involving Glucose Utilization (에이코사펜타에노익산에 의한 세포 내에서의 지방 축적 억제 효과 및 포도당 대사에 관여하는 전사인자의 변화)

  • Bu, So-Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.4
    • /
    • pp.501-508
    • /
    • 2011
  • Previous studies suggest that polyunsaturated fatty acids with long carbon chains such as eicosapentaenoic acid(EPA) and docosahexaenoic acid(DHA) have several health benefits. However metabolic consequences of these fatty acids themselves and their regulation of transcriptional activity involving glucose utilization are not well established. Thus, the purpose of this study was to investigate how EPA influx affects cellular lipid accumulation and gene expressions involving $de$ $novo$ lipogenesis in hepatocyte cultures. Compared to oleic acid treatment, EPA treatment showed remarkably decreased cellular TG conversion and accumulation, along with phospholipids at a lower extent. As expected, EPA increased mRNA expression involving fatty acid influx and lipid droplet formation, but did not affect mRNA expression involving glucose utilization. EPA increased transcriptional activity of PPAR-${\alpha}$ and glucose responsive transcription factor when transcription factor binding protein was activated. Taken together, these data suggest that EPA decreases lipid accumulation through increases of the ${\beta}$-oxidation pathway without interruption of glucose utilization.

Anti-obesity and hypolipidemic effects of Rheum undulatum in high-fat diet-fed C57BL/6 mice through protein tyrosine phosphatase 1B inhibition

  • Lee, Woo-Jung;Yoon, Goo;Hwang, Ye-Ran;Kim, Yong-Kee;Kim, Su-Nam
    • BMB Reports
    • /
    • v.45 no.3
    • /
    • pp.141-146
    • /
    • 2012
  • Protein tyrosine phosphatase 1B (PTP1B) is important in the regulation of metabolic diseases and has emerged as a promising signaling target. Previously, we reported the PTP1B inhibitory activity of Rheum undulatum (RU). In the present study, we investigated the metabolic regulatory effects of RU in a high-fat diet (HFD) model. RU treatment significantly blocked body weight gain, which was accompanied by a reduction of feed efficiency. In addition, it led to a reduction of liver weight mediated by overexpression of PPAR${\alpha}$ and CPT1 in the liver, and an increase in the expression of adiponectin, aP2, and UCP3 in adipose tissue responsible for the reduction of total and LDL-cholesterol levels. Chrysophanol and physcion from RU significantly inhibited PTP1B activity and strongly enhanced insulin sensitivity. Altogether, our findings strongly suggest that 2 compounds are novel PTP1B inhibitors and might be considered as anti-obesity agents that are effective for suppressing body weight gain and improving lipid homeostasis.

Dlx3 and Dlx5 Inhibit Adipogenic Differentiation of Human Dental Pulp Stem Cells

  • Lee, Hye-Lim;Nam, Hyun;Lee, Gene;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.37 no.1
    • /
    • pp.31-36
    • /
    • 2012
  • Dlx3 and Dlx5 are homeobox domain proteins and are well-known regulators of osteoblastic differentiation. Since possible reciprocal relationships between osteogenic and adipogenic differentiation in mesenchymal stem cells exist, we examined the regulatory role of Dlx3 and Dlx5 on adipogenic differentiation using human dental pulp stem cells. Over-expression of Dlx3 and Dlx5 stimulated osteogenic differentiation but inhibited adipogenic differentiation of human dental pulp stem cells. Dlx3 and Dlx5 suppressed the expression of adipogenic marker genes such as $C/EBP{\alpha}$, $PPAR{\gamma}$, aP2 and lipoprotein lipase. Adipogenic stimuli suppressed the mRNA levels of Dlx3 and Dlx5, whereas osteogenic stimuli enhanced the expression of Dlx3 and Dlx5 in 3T3-L1 preadipocytes. These results suggest that Dlx3 and Dlx5 exert a stimulatory effect on osteogenic differentiation of stem cells through the inhibition of adipogenic differentiation as well as direct stimulation.

Lignosulfonic acid promotes hypertrophy in 3T3-L1 cells without increasing lipid content and increases their 2-deoxyglucose uptake

  • Hasegawa, Yasushi;Nakagawa, Erina;Kadota, Yukiya;Kawaminami, Satoshi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.1
    • /
    • pp.111-118
    • /
    • 2017
  • Objective: Adipose tissue plays a key role in the development of obesity and diabetes. We previously reported that lignosulfonic acid suppresses the rise in blood glucose levels through the inhibition of ${\alpha}$-glucosidase activity and intestinal glucose absorption. The purpose of this study is to examine further biological activities of lignosulfonic acid. Methods: In this study, we examined the effect of lignosulfonic acid on differentiation of 3T3-L1 cells. Results: While lignosulfonic acid inhibited proliferation (mitotic clonal expansion) after induction of differentiation, lignosulfonic acid significantly increased the size of accumulated lipid droplets in the cells. Semi-quantitative reverse transcription polymerase chain reaction analysis showed that lignosulfonic acid increased the expression of the adipogenic transcription factor, peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$), leading to increased glucose transporter 4 (Glut-4) expression and 2-deoxyglucose uptake in differentiated 3T3-L1 cells. Additionally, feeding lignosulfonic acid to diabetic KK-Ay mice suppressed increase of blood glucose level. Conclusion: Lignosulfonic acid may be useful as a functional anti-diabetic component of food.

Anti-adipogenic Effect of Hydrolysate Silk Fibroin in 3T3-L1 Cells

  • Chon, Jeong-Woo;Lee, Kwang-Gill;Park, Yoo-Kyoung;Park, Kyung-Ho;Yeo, Joo-Hong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.21 no.2
    • /
    • pp.169-174
    • /
    • 2010
  • Hydrolysate silk fibroin (HSF) is a fibrous protein composed of parallel $\beta$-structures and is made from pure silk elements including 18 amino acids, with glycine, alanine, and serine comprising of over 80% of the amino acids. Numerous studies have documented a range of effects of HSF, including moisturizing, antioxidant activity, nervous system disorders, and many more. We investigated whether HSF has anti-obesity effects in vitro. The effects of HSF inhibition on lipid accumulation and acceleration of lipid degradation in 3T3-L1 cells were studied. Treatment of 3T3-L1 cells with HSF caused significant inhibition of cell viability, an increase in glycerol release, and a decreased in adipocyte differentiation. Moreover HSF stimulated downregulated of adipogenic enzyme expressions (PPAR${\gamma}$ and C/EBP${\alpha}$) and up-regulated of fatty oxidation enzyme expressions (CPT-1 and UCP-2). Based on these results, hydrolysate silk fibroin can be suggested as a potential therapeutic substance as part of a prevention or treatment strategy for obesity.

Adipocyte-Related Genes and Transcription Factors were affected by Ganoderma lucidum during 3T3-L1 Differentiation (지방세포 분화중인 3T3-L1 세포에서 영지추출물에 의한 지방관련 유전자와 전사인자의 발현 조절)

  • Lee, Chae-Woo;Yoon, Hyun-Min;Kang, Kyung-Hwa
    • Journal of Pharmacopuncture
    • /
    • v.12 no.2
    • /
    • pp.13-20
    • /
    • 2009
  • In this study, the effects of Ganoderma lucidum (GL) on fat metabolism were performed in 3T3-L1 adipocytes. The effects of GL on 3T3-L1 preadipocytes differentiation were also examined. Our results showed that GL decreased the TG content by ORO staining. To elucidate the mechanism of the effects of GL on lowering TG content in 3T3-L1 adipocytes, we examined whether GL modulate the expressions of transcription factors and adipokines related to control of energy expenditure process because adipokines regulate adipocyte mass and increased expenditure may consume much TG in adipocytes. As a result, the expression of C/$EBP{\beta}$, C/$EBP{\delta}$, C/$EBP{\alpha}$, and $PPAR{\gamma}$, genes, which induce the adipose differentiation and adipose-specific FAS, aP2, and adipsin genes, which compose fat formation were decreased. In addition, GL increased the expression of leptin, UCP2, adiponectin in 3T3-L1 adipocytes, resulting in energy homeostasis. In conclusion, GL could regulate transcript factor related to induction of adipose differentiation and control TG content by up-regulation of adipokines related to fat burn.