• Title/Summary/Keyword: PP-Wood

Search Result 50, Processing Time 0.025 seconds

A Study on the Mechanical, Thermal, Morphological, and Water Absorption Properties of Wood Plastic Composites (WPCs) Filled with Talc and Environmentally-Friendly Flame Retardants (친환경 난연제와 탈크를 첨가한 목재·플라스틱 복합재의 기계적, 열적, 형태학적 및 수분흡수 특성에 관한 연구)

  • Lee, Danbee;Kim, Birm-June
    • Journal of the Korea Furniture Society
    • /
    • v.27 no.2
    • /
    • pp.137-144
    • /
    • 2016
  • Wood plastic composite (WPC) is a green composite made of wood flour and thermoplastics to provide better performance by removing the defects of both wood and plastics. However, relatively low thermal stability and poor fire resistance of wood and plastics included in WPC have been still issues in using WPC as a building material for interior applications. This study investigated the effect of environmentally-friendly flame retardants (EFFRs) on the mechanical, thermal, morphological, and water absorption properties of wood flour (WF)/talc/polypropylene (PP) composites in comparison with neat PP. The whole EFFRs-filled WF/talc/PP composites showed higher values in flexural strength, flexural modulus, and impact strength compared to neat PP. In thermal properties, aluminum hydroxide (AH)-filled composite showed a $36^{\circ}C$ reduction in maximum thermal decomposition temperature ($T_{max}$) compared to neat PP, but magnesium hydroxide (MH) played an important role in improving thermal stability of filled composite by showing the highest $T_{max}$. From this research, it can be said that MH has potentials in reinforcing PP-based WPCs with improvement of thermal stability.

The Study on the Mechanical Properties of PP-Wood Materials according to Modifier Using Taguchi Method (다구찌 방법을 이용한 PP-Wood 소재에서 개질제의 첨가에 의한 기계적 특성 평가 연구)

  • Min, Young-Cho;Kang, Yun-Jin;Kang, Kyong-Sik
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2010.04a
    • /
    • pp.293-301
    • /
    • 2010
  • Wood-PP composite materials were prepared by Taguchi robust design method with L9 orthogonal array to optimize experimental conditions. Tensile strength of the composite materials was considered as the main properties. Amount of wood powder and modifier of resin were chosen as significant parameters. As the result of Taguchi analysis in this study, the amount of wood powder was the most influencing parameter on the increase of tensile strength. The optimal conditions were determined and these results were good agreement with data analyzed by Taguchi robust design method.

  • PDF

The Effect of Surface-Modification of Wood Powders by Plasma Treatment of Propylene on the Mechanical Properties of Wood Powder/PP Composites (프로필렌의 플라즈마 처리로 개질된 목분이 복합재료의 기계적 특성에 미치는 영향)

  • Cho, Dong Lyun;Ha, Jong-Rok;Kim, Byung Sun;Yi, Jin Woo
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.145-148
    • /
    • 2017
  • Wood powders were surface-modified by plasma-treating propylene to make them compatible with PP matrix in WPC(wood powder composite). The plasma treatment of propylene resulted in the deposition of an ultrathin hydrophobic film which had the chemical structure similar to that of polypropylene. Wood powder and polypropylene were mixed to pellets by twin screw extruder and then 50 wt% wood powder/PP composites were produced by an injection machine. Tensile strength and flexural strength were improved by 7.59% and 12.43% at the maximum respectively. SEM (Scanning Electron Microscopy) observation on the fracture surface revealed that the treatment improved the interfacial bonding and the mechanical properties of the composites.

Effects of Recycled PP Content on the Physical Properties of Wood/PP Composites (재활용 폴리프로필렌의 함량이 목분/폴리프로필렌 복합체의 물성에 미치는 영향)

  • Ahn, Seong Ho;Kim, Dae Su
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.129-137
    • /
    • 2014
  • In this study, the melt-mixing condition was optimized first to maximize the physical properties of a wood plastic composite (WPC) with recycled polypropylene (PP) and the effects of recycled PP content on the physical properties of the WPC were investigated. Mechanical properties of the WPC were measured by UTM and an izod impact tester and thermal properties were investigated by DSC, TGA and DMA. Fracture surfaces of the WPC were investigated by SEM. The optimized mixing condition of WPC with 50 wt% recycled PP of total PP was melt-mixing at $170^{\circ}C$ for 15 min at 60 rpm. With increasing the content of the recycled PP, the water absorption characteristics of the WPC increased and the thermal and mechanical properties decreased. However, the following was concluded from the analysis of all the physical properties; it was possible adding the recycled PP up to 50 wt% of total PP without a significant decrease in the performance of the WPC.

Tensile, Thermal and Morphological Properties of Ballmilled Clay/Wood Flour Filled Polypropylene Nanocomposites

  • Lee, Sun-Young;Kang, In-Aeh;Chun, Sang-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.160-167
    • /
    • 2008
  • Nanocomposites with polypropylene/clay/wood flour were prepared by melt blending and injection molding. Thermal, mechanical and morphological properties were characterized. The addition of ballmilled clay, compatibilizer and wood flour significantly improved the thermal stability of the hybrids. The tensile modulus and strength of most hybrids was highly increased with the increased loading of clay, maleated polypropylene (MAPP) and wood flour (WF), compared to the PP/WF hybrids. The tensile modulus and strength of most hybrids were highly increased with the increased loading of ballmilled clay, MAPP and wood flour, compared to the hybrids with PP/WF. The transmission electron microscopy (TEM) photomicrographs illustrated the intercalated and partially exfoliated structures of the hybrids with ballmilled clay, MAPP and wood flour.

Study of the Plasma Coating Effect on Wood Powder Composites (플라즈마 표면 코팅된 목분 복합재료의 영향 연구)

  • Ha, Jong-Hak;Kim, Byung-Sun;Hwang, Byung-Sun;Kang, Byong-Yun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.99-102
    • /
    • 2005
  • Plasma surface coating is applied to the wood powder to improve its bonding and dispersion with the polypropylene(PP). Some mechanical test results and visual inspection indicates the good compatibility between the wood powder and the PP, and relatively good interfacial adhesion between wood powder and PP matrix was seen. Also, this method is considered as a non-toxic process as compared to other direct chemical method.

  • PDF

Mechanical and Thermal Properties of Polypropylene/Wax/MAPP Composites Reinforced with High Loading of Wood Flour

  • Lee, Sun-Young;Kang, In-Aeh;Doh, Geum-Hyun;Mohan, D. Jagan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.416-426
    • /
    • 2007
  • Polypropylene (PP) composites with wood flour/wax/coupling agent were manufactured by melt compounding and injection molding. The influence of wood flour(WF), wax, and coupling agent on the mechanical and thermal properties of the composites was investigated. The addition of wood flour to neat PP has the higher tensile modulus and strength compared with neat PP. The presence of wax also improved the tensile modulus. At the same loading of PP and WF, the addition of coupling agent highly decreased the tensile modulus, and increased the tensile strength. From thermogravimetric analysis (TGA), the addition of wax improved the thermal stability of the composites in the later stages of degradation. The presence of MAPP and wood flour in turn decreased thermal stabilities of composites. From differential scanning calorimetry analysis (DSC), neither the loading of wax. nor the presence of MAPP has shown significant effect on the thermal transition of composites.

The Flame Retardance and Mechanical Properties of Wood Powder-filled PP Composites (목분-PP 복합체의 난연성과 기계적 특성)

  • Son, Won-Keun;Hwang, Taek-Sung
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.46-50
    • /
    • 1999
  • Effects of $(NH_4)_2HPO_4$ and boron compounds ($Na_2B_4O_7:H_3BO_3=5:1\;ratio$) on the flame retarding characteristics of the surface modified wood powder-filled polypropylene composites were studied experimentally. The mechanical properties of m-phenylene dimaleimide(PDMI)-modified polypropylene composite were also compared with those of unmodified one. The flame retardance of $(NH_4)_2HPO_4$-modified wood powder composites was more improved than that of boron compounds-modified one. The impact strength of composites increased and the tensile strength of those decreased progressively with an increase of wood powder loading. The mechanical properties of modified polypropylene composites are more improved than those of unmodified one. The tensile strength also increased marginally with increasing the concentration of flame retardants, yielding a maximum when the concentration of flame retardant is 25.0 wt %. And the tensile strength of the composite was increased up to 16 wt % with increasing concentration of PDMI.

  • PDF

A Study on the Phase Separation and Mechanical Properties of Wood Flour-Polypropylene Composites (목분-폴리프로필렌 복합체의 상분리 및 기계적 특성에 관한 연구)

  • Lee, Kyoung Hee;Byon, Sungkwang
    • Elastomers and Composites
    • /
    • v.48 no.3
    • /
    • pp.216-220
    • /
    • 2013
  • The phase separation in Wood Flour-Polymer Composite (WPC) was investigated and the reasons for change in mechanical properties with the content of wood flour were explored. The wood flour-polypropylene composite samples with different wood flour contents were prepared. From differential scanning calorimetry (DSC) thermograms of WPC samples, the trend of crystallinity and melting temperature ($T_m$) were analyzed. The crystallinity and melting temperature increased and then decreased as the content of wood flour increased. From these results, it was confirmed that at the low wood flour content the wood flours were dispersed into the polypropylene matrix but at the high wood flour content, the phase separation between polymer and wood flour phases appeared. The tensile strength of WPC samples was continuously decreased with the increase of wood flour content. At a low wood flour content, the low interfacial bonding and the decrease in crystallinity were the main reasons for the decrease in tensile strength with the increase of wood flour content. At a high wood flour content, the decrease in tensile strength resulted from the interfacial defects between the polymer and wood flour phases. The impact strength of the WPC sample showed the maximum behavior with the content of wood flour. At a low wood flour content, the impact strength was enhanced owing to the decrease in brittleness, which results from the decrease in crystallinity. At a high wood flour content, however, the impact strength decreased due to phase separation.

Study of Plasma Polymerization on Wood Powder/PP Composites Interface (플라즈마 처리가 목분/폴리프로필렌 복합재의 계면에 미치는 영향 연구)

  • Ha, Jong-Rok;Kim, Byung Sun;Yi, Jin Woo
    • Composites Research
    • /
    • v.26 no.3
    • /
    • pp.170-174
    • /
    • 2013
  • Atmospheric glow plasma polymerization was applied to wood powder before fabricating polypropylene (PP) matrix composites. Seven different types of monomers (Oxygen, Benzene, CH4, Acrylic-acid, Hexafluoroethane, Trifluorotolune, Hexamethyl-disiloxane) were analyzed to determine the most suitable precursor for plasma polymerization. The surface energy was calculated from measured contact angle about each monomer on PP. Hexamethyl-disiloxane (HMDSO) had a highest surface energy and is selected as the most suitable monomer. Wood powder and polypropylene were mixed as pellets by twin screw extruder and then 50 wt% wood powder/PP composites were produced by an injection machine. Tensile strength and Flexural strength have improved by 7.59% and 12.43% at the maximum respectively. SEM (Scanning Electron Microscope) observation on the fracture surface revealed that the plasma polymerization have improved the interfacial bonding and the mechanical properties of the composites.