• Title/Summary/Keyword: POSTURE STABILITY

Search Result 211, Processing Time 0.026 seconds

Effects of self stretching exercise and movement with mobilization in lunge position on the muscle activity and balance in chronic stroke patients (런지자세에서의 자가 신장운동과 능동운동을 동반한 가동술이 만성 뇌졸중 환자의 근활성도 및 균형에 미치는 영향)

  • Jeong, Yong-Sik
    • Journal of Digital Convergence
    • /
    • v.11 no.10
    • /
    • pp.549-556
    • /
    • 2013
  • In this study, we investigated the effects of stretching and movement with mobilization in lunge position on the muscle activity of the lower limb and limited of stability in chronic stroke patients with hemiplegia. Sixteen subjects were randomly selected and classified into the experimental and control groups. The experimental group performed self stretching exercises in the lunge position, and in the control group performed movement with mobilization in the lunge position. The interventions were conducted for 20 min, 5 times a week for 8 weeks. Statistical analyses were performed using repeated ANOVA. The analysis results showed no statistically significant between-group differences with respect to the muscle activity(%MVIC;maximum voluntary isometric contraction) of lower limb and limited of stability(LOS)(p>.05). However, statistically significant within-group differences were observed in the maximum voluntary isometric contraction and limited of stability for both the groups (p<.05). Therefore, self stretching in the lunge position is considered to have positive influences on the muscle strength and balance in stroke patients with hemiplegia.

The Effects of Task Difficulty Controlled by Surface Condition During Bridging Exercise on Relative Multifidus Activation Ratio (교각 자세 운동 시 지지면 불안정성을 통한 과제 난이도가 다열근의 선택적 근활성도 비에 미치는 영향)

  • Song, Eun-Ju;Choi, Jong-Duk
    • Physical Therapy Korea
    • /
    • v.18 no.3
    • /
    • pp.59-66
    • /
    • 2011
  • The purpose of this study is to examine the activity ratios of global trunk muscles and local trunk muscles in relation to adjustments in the level of task difficulty while performing stability exercises in easily applied bridging lumbar stabilization exercise. Twenty healthy subjects performed bridging lumbar stabilization exercise while the level of task difficulty was plate was used in the same posture for all the exercises. EMG was used to examine the activity ratios of the global muscles and multifidus in relation to the level of task difficulty. Moreover, the activity ratios of the multifidus muscle, the erector spinae and the gluteus maximus muscle were measured. A one-way ANOVA with repeated measures was used, and a Bonferroni correction was conducted (${\alpha}$=.05). When the bridging lumbar stabilization exercise were performed at different difficulty levels, the activity of the multifidus muscle, which is a local muscle, was high in all three exercises. Also, compared to low intensity and intermediate intensity exercises, high intensity exercises showed more significant differences (${\alpha}$=.05). Among all the muscles, the multifidus showed the highest activity at intermediate intensity. Based on these results, we suggest that in the case of bridging lumbar stabilization exercise, low intensity or intermediate intensity exercises are more suitable and efficient for local muscle stabilization.

Effects of VHP Positions on the Steering Stability of Agricultural Tractors(I) -Derivation of Safe Region for VHP Locations- (가상(假想) 히치점의 위치(位置)가 트랙터의 조향(操向) 안정성(安定性)에 미치는 영향(影響)(I) -가상(假想) 히치점의 안전(安全) 영역(領域)에 대한 이론적(理論的) 고찰(考察)-)

  • Shin, S.I.;Kim, K.U.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.2
    • /
    • pp.118-123
    • /
    • 1991
  • This study was conducted to investigate the influences of virtual hitch point (VHP) positions of a three-point hitch on the steering stability of agricultural tractors. The VHP locations were determined analytically from the linkage geometry and implement posture during the normal tillage operations. The maximum force applicable to the VHP was also determined under the given soil and power constraints. From these possible ranges of the VHP locations, a safe region for steering control was determined theoretically by using maximum applicable forces for the given tractor and implement combinations. With VHP positions within the safe region, tractor can maintain the minimum soil reaction forces, assumed 20% of the total tractor weight in this study, at the front wheels which is required for the steering control under the maximum traction conditions. This paper mainly concerns with mathematical developments for the determination of VHP locations and maximum forces applicable to the VHP for steering control. Experimental validation of the theory developed here follows as the second part of this study.

  • PDF

Dynamic Gait embody using angular acceleration for a Walking Robot (각가속도를 이용한 이족 로봇의 동적 걸음새 구현)

  • Park, Jae-Mun;Park, Seung-Yub;Ko, Bong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.2
    • /
    • pp.209-216
    • /
    • 2007
  • In this paper, we embodied posture-stabilization and dynamic gait in a walking robot. 10 RC servo motors are used to operate joints. And the joints have enough moving ranges suitable in any walking pattern. Each joint trajectory is generated by cubic spline interpolation method and the stability of the trajectory is verified by using Zero Moment Point from the robot modeling. To avoid complex structure and expression, Zero Moment Point of the biped robot used angular acceleration is suggested. To measure the stability of the biped robot, Tilt sensor and gyro sensor are used. Finally, Personal Computer is used computer monitoring and data processing. Most of computation, such as 10 RC servo motor control, joint trajectory generating, ZMP compensation, sense measuring, etc, was used Digital Signal Processor.

  • PDF

Development of a Low-cost Unmanned Underwater Vehicle and Performance Verification (저가 수중 무인 이동체 개발 및 운동성능 검증)

  • Hwang, Dongwook;Jang, Mingyu;Kim, Jinhyun
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.2
    • /
    • pp.103-112
    • /
    • 2018
  • In this paper, a high performance underwater vehicle which can be manufactured at low cost is designed and fabricated, and its performance is verified through experiments. To improve efficiency, the Myring equation is used to design the appearance and the duct structure including the thruster is planned to increase the propulsion efficiency while reducing the drag force. Through various methods, it is secured stable waterproof performance, and also is devised to have high speed movement and turning performance. The developed underwater vehicle is equipped with a high output BLDC motor to achieve a linear speed of up to 2 m/s and can change direction rapidly with stability through four rudders. The rudders are driven by coupling a timing belt and a pulley by extending the axis of a servo motor, and are equipped at the end of the body to turn heading. In addition, for stable posture control, the roll keeps its internal center of gravity low and maintains its stability due to restoring force. By controlling the four rudders, pitch and yaw are handled by the PID controller and show stable performance. To investigate the horizontal turning performance, it is confirmed that the yaw rate controller is designed and stable yaw rate control is performed.

Change to Pain's Level of Chronic Back pain patient With Hamstring Shortening in 27year's old After Application to Active Therapeutic Movement (ATM) and Sling Exercise-Case study (슬괵근 단축이 있는 27세 남자 만성요통환자의 ATM, 슬링운동치료 적용 후 통증수준의 변화-사례연구)

  • Yu, Woung-Sik;Jeon, Cha-Sun;Won, Sang-Hee
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.15 no.1
    • /
    • pp.64-71
    • /
    • 2009
  • Purpose: to purpose prevent to dysfunction and decrease to pain level use to active therapeutic movement and sling manual, stability exercise in shortening hamstring chronic back patient. Methods: The patient's complain was Buttock and Lower Back Pain due to dysfunction posture work. The subject's initial Pain Scale was 60 of 100(VAS). The Subject Treatment to Sling Mobility exercise, Home exercise, ATM, Sling Stability exercise, sensory motor training During 8weeks for 18 times. Results: The result was Visual Analog Scale(VAS)was decreased 10 of 100 after treatment. Conclusion: Visual Analog Scale(VAS)was decreased 10 of 100 after treatment. Functional Leg Length Was recover to same level. Trunk Flexibility was increase to 18cm. Active Knee Extension ankle was decrease to $15^{\circ}$ limit range of motion due to Lt. Hamstring Shortening limit range of motion $30^{\circ}$. GPS(Gobal Postural System)test was recover to same level. This case study need to sufficient data and times.

  • PDF

Sound Levels and Postural Body Sway during Standing (소음수준에 따른 신체자세동요의 변화)

  • Park, Sung-Ha;Lee, Seung-Won
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.1-15
    • /
    • 2006
  • Loss of postural balance can possibly lead to increased risk of slips and falls in work places. Present study was performed to investigate the effects of noisy environments on postural stability during standing. It is known that a sound is characterized by the frequency and pressure level of the sound. Therefore, effects of the frequency and pressure level on postural stability were of primary concern. Ten male subjects participated in the experiment. Subject's center of pressure(COP) position was collected on a force plate while they were exposed to different frequency and pressure levels of the sound. Measured COP was then converted into the length of postural sway path in both anterior-posterior(AP) and medio-lateral(ML) axis. Results showed that the length of sway path in AP axis was significantly affected by the frequency of sound. The length of sway path was lowest at frequency level of 2000Hz and increased below and above this frequency range. The sound pressure level, however, did not significantly affect the postural sway length in both AP and ML axis. The results imply that industrial workers in noisy environments should be aware that their abilities of postural balance can be disturbed significantly.

Effects of Ankle and Hip Strategy Training on Improving the Center of Pressure Movements and Limits of Stability in Stroke Patients

  • Park, Shinjun;Park, Sunghyun;Kim, Yongyoun
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.10 no.3
    • /
    • pp.1823-1829
    • /
    • 2019
  • Background: Stroke patients have leg muscle weakness and impaired balance resulting in compensatory changes. To restore balance in these patients, functional training using postural strategy is needed. Objective: To examine the effects of ankle and hip strategy training on the center of pressure (COP) movement and limits of stability (LOS) in standing posture in stroke patients. Design: The study was an assessor-blinded and randomized-controlled clinical trial. Methods: Thirty patients were randomly assigned to an ankle strategy training group and a ankle/ hip strategy training group. Patients in the ankle strategy training group underwent ankle strategy exercise for 30 min, and those in the ankle/ hip strategy training group underwent 15 min of ankle strategy exercise and 15 min of hip strategy exercise. Both groups underwent training thrice a week for four weeks. Forward, backward, paretic side, and non-paretic side COP movements and LOS were measured using BioRescue. Results: After the intervention, except for the backward area in the ankle strategy training group, the COP movement area and the LOS were significantly improved in both the groups. In addition, these improvements were significantly higher in ankle/ hip strategy training group than that in the ankle strategy training group. Conclusions: Ankle strategy training in addition to hip strategy training improves COP movement (forward-backward, paretic side area, and non-paretic side area) and LOS in stroke patients.

Effect of Masticating Chewing Gum on the Balance of Stroke Patients

  • Gim, Mina;Choi, Junghyun
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.12 no.2
    • /
    • pp.2370-2374
    • /
    • 2021
  • Background: Masticating is an activity that is free from temporal or spatial constraints, with an advantage that it can be combined easily with other treatment methods. While several studies have reported a positive effect of the intervention of chewing using the jaw on postural stability, only a few studies were conducted on stroke patients. Objectives: To investigated the effects of masticating chewing gum on the static and dynamic balancing of stroke patients. Design: Randomized cross-over study design. Methods: Nineteen stroke patients were randomly assigned to the chewing group or control group. BT4 was used to measure the static and dynamic balancing abilities. Pre-test measurements were taken before mastication of chewing gum, and post-test measurements were taken after 2 days. The stroke patients in the chewing group were guided to sit on a chair and chew gum for 3 min, and their balancing abilities were simultaneously measured. The balancing abilities of the control group patients were measured while they sat at rest without masticating chewing gum. Results: The chewing group showed significant increases in the measures of static balance (i.e., C90 area, trace length, X mean, and Y mean). In the between-group comparison, the measures of static balance were significantly higher in the chewing group than in the control group. Conclusion: These findings suggest that masticating chewing gum enhanced the static balancing ability of stroke patients. Thus, gum chewing should be considered a viable clinical intervention to control posture in stroke patients.

Rough Terrain Landing Technique of Quadcopter Based on 3-Leg Landing System (3-leg 랜딩 시스템 기반 쿼드콥터의 험지 착륙 기법)

  • Park, Jinwoo;Choi, Jiwook;Cheon, Donghun;Yi, Seungjoon
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.438-446
    • /
    • 2022
  • In this paper, we propose an intelligent three-legged landing system that can maintain stability and level even on rough terrain than conventional four-legged landing systems. Conventional landing gear has the limitation that it requires flat terrain for landing. The 3-leg landing system proposed in this paper extends the usable range of the legs and reduces the weight, allowing the quadcopter to operate in various environments. To do this, kinematics determine the joint angles and coordinates of the legs of the two-link structure. Based on the angle value of the quadcopter detected via the IMU sensor, the leg control method that corrects the posture is determined. A force sensor attached to the end of the leg is used to detect contact with the ground. At the moment of contact with the ground, landing control starts according to the value of the IMU sensor. The proposed system verifies its reliability in various environments through an indoor landing test stand. Finally, in an outdoor environment, the quadcopter lands on a 20 degree incline and 20 cm rough terrain after flight. This demonstrates the stability and effectiveness of the 3-leg landing system even on rough terrain compared to the 4-leg landing system.