• Title/Summary/Keyword: POLED

Search Result 196, Processing Time 0.024 seconds

Fabrication and characteristics of pyroelectric infrared sensors using P(VDF/TrFE) film (P(VDF/TrFE) 필름을 이용한 초전형 적외선 센서의 제작 및 특성)

  • Kwon, Sung-Yeol;Kim, Ki-Wan
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.226-231
    • /
    • 1999
  • Pyroelectric infrared sensors have been fabricated using P(VDF/TrFE) film with pyroelectric effect. The weight percent and thickness of the poled P(VDF/TrFE) film are 75/25 percent and $25\;{\mu}m$ respectively. For easier fabrication and connection method new top and bottom electrodes design was adapted for human body detecting pyroelectric infrared sensor. An aluminum infrared absorption electrode and bottom electrode were deposited by thermal evaporator. And the device was mounted in TO-5 housing to detect infrared light of $5.5{\sim}14\;{\mu}m$ wavelength. The responsibility, NEP (noise equivalent power) and specific detectivity $D^*$ of the device were $9.62{\times}10^5\;V/W$, $3.95{\times}10^{-7}\;W$ and $5.06{\times}10^5\;cm/W$ under emission energy of $13\;{\mu}W/cm^2$ respectively.

  • PDF

Piezoelectric Properties in PMN-based Relaxor Ferroelectrics (PMN계 완화형 강유전체에서의 압전물성)

  • Park, Jae-Hwan;Park, Jae-Gwan;Kim, Yun-Ho;Park, Soon-Ja
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.240-243
    • /
    • 1999
  • Piezoelectric properties of O.9PMN-0.1PT relaxor ferroe1ectrics were investigated in the temperature range of $-40^{\circ}C~$100^{\circ}C$. After poled at $-40^{\circ}C$, electro-mechanical properties of the samples were measured by resonance antiresonance method. As the resonance behavior was shown in impedance spectrum obtained below $0^{\circ}C$, it can be c conduded that 0.9PMN-0.1PT is bona-fide ferroelectrics below the phase transition temperature. It is very noteworthy that electro-mechanical resonance occurs at the temperatures far above the phase transition temperature. It is coneluded that ferroelectricity in 0.9PMN-0.1PT relaxor were verified far above the phase transition temperature.

  • PDF

Application to Piezoelectric and Triboelectric Generators of Spongy Structured BaTiO3 Prepared by Sputtering (Sputtering에 의해 제조된 해면 구조 BaTiO3의 압전 및 마찰전기 발전기에의 응용)

  • Seon-A Kim;Sang-Shik Park
    • Korean Journal of Materials Research
    • /
    • v.34 no.1
    • /
    • pp.34-43
    • /
    • 2024
  • New piezoelectric and triboelectric materials for energy harvesting are being widely researched to reduce their processing cost and complexity and to improve their energy conversion efficiency. In this study, BaTiO3 films of various thickness were deposited on Ni foams by R.F. magnetron sputtering to study the piezoelectric and triboelectric properties of the porous spongy structure materials. Then piezoelectric nanogenerators (PENGs) were prepared with spongy structured BaTiO3 and PDMS composite. The output performance exhibited a positive dependence on the thickness of the BaTiO3 film, pushing load, and poling. The PENG output voltage and current were 4.4 V and 0.453 ㎂ at an applied stress of 120 N when poled with a 300 kV/cm electric field. The electrical properties of the fabricated PENG were stable even after 5,000 cycles of durability testing. The triboelectric nanogenerators (TENGs) were fabricated using spongy structured BaTiO3 and various polymer films as dielectrics and operated in a vertical contact separation mode. The maximum peak to peak voltage and current of the composite film-based triboelectric nanogenerator were 63.2 V and 6 ㎂, respectively. This study offers new insights into the design and fabrication of high output nanogenerators using spongy structured materials.

Second harmonic generation of pulsed corona - poled nonlinear optical polymer films (펄스 corona 배향된 비선형광학 고분자박막의 제2 고조파발생)

  • Kim, Jun-Soo;Lee, Jong-Ha;Lee, Hwang-Un;Kim, Sang-Youl;Won, Young-Hee
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.356-362
    • /
    • 2002
  • The molecular orientational dynamics of the nonlinear optical(NLO) side-chain polymer N-(4-nitrophenyl)-(L)-prolinol-poly (pphenylene terephthalates) have been studied using nonlinear optical responses as measured by second harmonic generation (SHG). A new pulsed corona poling is used to orient the NLO chromophores and the polymer segments into the noncentrosymmetric structure required to obtain the SHG signal. By corona poling of negative high voltage pulses with variable repetition rates (between 0.5 and 10 ㎑) at temperature between 25$^{\circ}C$ and 80$^{\circ}C$, well below and about the glass transition temperature 70$^{\circ}C$, the side-chain chromophores and the polymer chain contour rearrange themselves and create the domain structure observed by atomic force microscopy(AFM). The pulsed corona voltage enhances the orientational ordering of the NLO chromophores and also significantly influences the growth of SHG signal and the improved relaxation behavior after the poling field is removed, reducing the visible damage to the polymer film dramatically. This new pulsed corona poling experiment gave direct in situ evidence that the NLO chromophore and the polymer backbone undergo anisotropic rearrangement during the poling process.

Efficient Second Harmonic Generation of a High-power Yb-doped Fiber MOPA Incorporating MgO:PPSLT (MgO:PPSLT를 이용한 고출력 Yb 광섬유 레이저 빔의 고효율 이차조화파 변환)

  • Song, Seungbeen;Park, Eunji;Park, Jong Sun;Oh, Yejin;Jeong, Hoon;Kim, Ji Won
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.3
    • /
    • pp.142-147
    • /
    • 2020
  • In this paper, we report highly efficient second harmonic generation of continuous-wave Yb fiber lasers incorporating a periodically poled LiTaO3 device (MgO:PPSLT) as a frequency converter. The seed laser output from a Yb fiber master oscillator using a Fabry-Perot feedback cavity was amplified in a Yb fiber amplifier stage, yielding 28.5 W of linearly polarized output at 1064 nm in a beam with beam quality, M2, of ~1.07. Second harmonic generation was achieved by passing the laser beam through MgO:PPSLT. Under optimized conditions, we obtained 11.1 W of green laser output at 532 nm for an incident signal power of 25.0 W at 1064 nm, corresponding to a conversion efficiency of 44.4%. The detailed investigation to find the optimized operating conditions and prospects for further improvement are discussed.

Linewidth Reduction of a Yellow Laser by a Super-cavity and the Measurement of the Cavity Finesse (초공진기를 이용한 노란색 레이저의 선폭 축소 및 초공진기의 예리도 측정)

  • Lee, Won-Kyu;Park, Chang-Yong;Park, Sang-Eon;Ryu, Han-Young;Yu, Dai-Hyuk;Mun, Jong-Chul;Suh, Ho-Suhng
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.3
    • /
    • pp.123-128
    • /
    • 2010
  • Sum frequency generation was utilized to obtain a yellow laser with the wavelength of 578.4 nm for a probe laser of an Yb lattice clock. The output of an Nd:YAG laser with wavelength of 1319 nm and that of an Yb-fiber laser with wavelength of 1030 nm were passed through a waveguided periodically-poled lithium niobate (WG-PPLN) for sum frequency generation. It is required that the probe laser has a linewidth of the order of 1 Hz to fully resolve the Yb lattice clock transition. Thus, the linewidth of the probe laser was reduced by stabilizing the frequency to a super-cavity. This was made of ULE with a low thermal expansion coefficient, and was mounted on an active vibration-isolation table at the optimal point for the reduced sensitivity to vibration. Also, this was installed in a vacuum chamber, and the temperature was stabilized to 1 mK level. This system was installed in an acoustic enclosure to block acoustic noise. The finesse of the super-cavity was measured to be 380 000 from the photon life time of the cavity.