• Title/Summary/Keyword: PMV thermal environment

Search Result 78, Processing Time 0.027 seconds

An Evaluation of Thermal Comfort on Urban Neighborhood Park for Improving Thermal Environment (도시근린공원의 열환경 개선을 위한 열쾌적성 평가)

  • Lim, Eun-Na;Lee, Woo-Sung;Choi, Chul-Hyun;Song, Bong-Geun;Jung, Sung-Gwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.4
    • /
    • pp.153-170
    • /
    • 2013
  • This study was conducted to analyze the thermal comfort in the urban neighborhood park and to obtain a plan for improvement of the thermal environment. First, in the result of the analysis of the distribution characteristics of the park's main thermal environment factors and differences among types of space, temperature, relative humidity, and wind speed did not show a clear difference spatially. However, the median radiant temperature showed great differences according to the openness of the space and the covering material. According to the evaluation of thermal comfort by types of space based on derived thermal environmental factors, the PMV value of the square was the highest at 4.39, the paths showed 2.58, greenery 1.90, and resting spaces 0.42. In the result of the PMV regression model established for the evaluation of the significance of these thermal environment factors that decide thermal comfort, it showed that the relative significance to the PMV was as follows in decreasing order: median radiant temperature(1.084), wind speed(-0.280), temperature(0.013), and relative humidity(-0.009). When conducting a scenario analysis on the areas with need for improvement in thermal environment, it was found that through reflectivity, color and the change in the physical properties of packing materials the thermal comfort felt by the body could be improved, and it is believed that through this the improvement plan can be established.

Measurement and Analysis of Indoor Thermal Environment in Passenger Car (철도차량 객차내 온열환경 측정 분석)

  • So, Jin-Sub;Yoo, Seong-Yeon
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.2
    • /
    • pp.120-125
    • /
    • 2008
  • The Ministry of Environment established a guide line Indoor Air Quality Management guidelines in Public Facilities in December 2006. As the items of the guideline, $CO_2$ (Carbon dioxide) and PM10 (Particulate matter). Therefore trains and subway need to control air quality. The indoor thermal environment in passenger car is very important for the enhancement of the amenity and health of passengers. Many researchers have studied it not for train but for building. So, in this study, we have performed thermal environment in passenger car (KTX, Mugunghwa, Saemaeul), and verified the relation between the PMV (Predicted Mean Vote) and PPD (Predicted Percent Dissatisfied) from September to October 2007. As a result, the average PMV value for each trains are 0.1, 0.22 for KTX, 0 for Mugunghwa, 0.1 for Saemaeul. So it satisfies the ASHRAE Handbook thermal environmental limit (-0.5 < PMV < +0.5).

Evaluation of Thermal Comfort in Task Area with Personal Air-Conditioning System(PACS) b PMV Index (PMV 지표에 의한 개별 공조시스템(PACS)의 쾌적성 평가에 관한 연구)

  • 최익순;정광섭;박영칠;한화택;이정재
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.647-652
    • /
    • 2001
  • The thermal comfort of indoor spaces is very important factor in our life. Regions, cultures, climates and individual difference for establishing thermally comfortable environments should be considered carefully because these factors have a large influence on the thermal comfort doing some complicated interactions with environmental, psychological and physical elements. Recently, predicted mean vote(PMV) based on the heat transfer theory between environmental factors and human bodies has evaluated by many researchers and widely used nowadays. The objective of this study is to evaluate the thermal comfort in workspaces with personal air conditioning system using the measurements of environmental comfort parameters and the questionnaire survey of occupant's thermal senses with response to the environment.

  • PDF

Combined Effects of PMV and Acoustics on Indoor Environmental Perception (PMV와 음환경의 복합 작용이 실내 환경 지각에 미치는 영향)

  • Yang, Wonyoung
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.135-142
    • /
    • 2016
  • Purpose: The purposes of this paper are to investigate effects of indoor thermal environment on acoustical perception and effects of acoustics on indoor thermal perception, and to understand basic human perception on indoor environment. Method: Subjective assessment was performed in an indoor environmental chamber with 24 university students. Thermal conditions with PMV -1.53, 0.03, 1.53, 1.83 were simulated with a VRF system, a humidifier, a dehumidifier, and a ventilation system. Six noise sources - Cafe, Fan, Traffic, Birds, Music, Water- with sound levels of 45, 50, 55, 60 dBA were played for 2 minutes in random order. Temperature sensation, temperature preference, humidity sensation, humidity preference, noisiness, loudness, annoyance, and acoustic preference were assessed using bipolar visual analogue scales. The ANOVA and Turkey's post hoc test were used for data analysis. Result: Thermal environmental perceptions were not altered through 2 minutes noise exposure. Acoustical perceptions were altered by thermal conditions. The results were consistent with previous papers, however, the noise exposure time should be carefully considered for further development.

A Study on the Thermal Sensation Vote of the Log House in Winter Season (통나무집의 동절기 실내 온열감 평가에 관한 연구)

  • Min, Byeong-Cheol;Jeon, Ji-Hyeon;Shin, Yong-Gyu;Kang, Sang-Woo;Kook, Chan
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2006.11a
    • /
    • pp.297-300
    • /
    • 2006
  • Various buildings constructed by environmentally friendly resources are being built in KOREA. Especially the building made by the wood, which has environmental characteristics that the reinforced concrete and brick doesn't have, are acknowledged with its superiority. Then, studies on indoor thermal control capability of the wooden building and influence of its indoor environment to sensory environment of occupants are not enough proceed. Thus, there were proceeded 24 hours measurements for indoor and outdoor thermal environmental elements of Log Cabins and the hourly subjective tests to evaluate indoor amenity of occupants in this study. The results of the study are following: 1) Upon evaluation on thermal environment elements, indoor and outdoor dry bulb temp were 22.0$^{\circ}C$ and -2.9$^{\circ}C$, and Indoor and outdoor average relative humidity were 25.8%and 52.7%. Differences of indoor and outdoor temperature and humidity were 24.9$^{\circ}C$ and 26.9%. 2) Upon contrastive analysis between the results of subjective tests, warm and cold sensation vote, and PMV (Predicted Mean Vote) and PPD (Predicted Percent Dissatisfaction), values of subjective tests W.9

  • PDF

Effect of Thermal Environment and Illuminance on the Occupants Works based on the Electroencephalogram and Electrocardiogram Analysis (뇌파와 심전도 분석을 기반으로 한 온열환경 및 조도가 재실자의 업무에 미치는 영향)

  • Kim, Hyung-Sun;Lim, Jae-Hyun;Kim, Hyoung-Tae;Kim, Hyoung-Sik;Kuwak, Won-Tack;Kim, Jin Ho
    • Science of Emotion and Sensibility
    • /
    • v.17 no.3
    • /
    • pp.95-106
    • /
    • 2014
  • This research analyzed biosignals associated with the change of emotion from lighting felt by the occupants and task type under various indoor thermal environments and illuminance, and examined the biosignals' impacts on work. To this end, the indoor thermal environment was constructed on the basis of PMV (predicted mean vote) index value, and various indoor environments were created by changing the brightness of LED stands. In this manner, a variety of indoor environments were constructed, and experiments were carried out. This research evaluates the sensibility response to lighting through a questionnaire survey in the given environment and incorporates different types of error searches. In this way, changes were analyzed by measuring electroencephalogram (EEG) and electrocardiograms (ECG). As a result, all biosignals on the task type showed significant differences from the thermal environment change. When PMV index value was 0.8 (temperature: $25^{\circ}C$, humidity: 50 %), concentration and attention were the most activated. However, the biosignals did not show significant differences from the illuminance change. Concentration on an occupant's work capability was confirmed to be closely related to the thermal environment. As for the subjective emotional response to lighting, the occupants felt comfort as illuminance was lower, while they felt discomfort as illuminance was higher. However, there were no significant differences from the thermal environment change.

Analysis of optimal activities according to thermal comfort in the forest: focusing on a program for the elderly at the National Forest Therapy Center

  • Tae-Gyu Khil;Ah-Young Jung;Kun-Woo Park;Yang-Soon Oh;Beom Lee;Dawou Joung;Hyelim Lee;Bum-Jin Park
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.663-673
    • /
    • 2023
  • The purpose of this study was to scientifically activate the forest healing program activities for the elderly. The predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD), which are indices of thermal comfort in the thermal environment, and degree of canopy closure were compared and analyzed. Based on this information, the study objective was to present the appropriate conditions for maintaining the best comfort for the elderly. Six deck road shelters, which are the most active locations in forest healing programs among the National Center for Forest Therapy, were selected as the study sites. The results indicated that in the case of the conditions of 1 clo (clothing insulation value) and 1 met (metabolic rate) at an air temperature of 19 to 21 degrees in September on the measurement date, the PMV values ranged between -1.85 and -0.98 at all sites, and PPD values ranged between 25.60% and 68.68%. On the other hand, in the case of 1.3 clo and 1.6 met conditions, the PMV values ranged between -0.08 and 0.23 for all sites and PPD values ranged between 5.40 and 6.18. As shown above, the difference in thermal environment comfort and satisfaction according to the condition of the amount of metabolism and the amount of clothing could be confirmed. In addition, an analysis of the relation between PPD and canopy closure suggested a significantly positive correlation between them, and it was found that canopy closure was a factor affecting thermal comfort. Studies on effects of forest thermal environmental comfort and canopy closure on forest healing program areas should be conducted extensively according to seasonal conditions to provide information that can be used for more effective forest healing programs.

Measurement and Analysis of indoor PMV by Winter Temperature Humidity Change in Rolling Stock (겨울철 온도와 습도변화에 따른 철도차량 실내 PMV 측정 분석)

  • So, Jin-Sub;Yoo, Seong-Yeon;Kim, Hui-Man;Kang, Sung-Hae;Kim, Wan-Jong;Kim, Yun-Su;Kim, Jin-Kyu;Seo, Seung-Seok;Yun, Cha-Jung
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2094-2100
    • /
    • 2008
  • The indoor PMV(Predicted Mean Vote) in rolling stock is very important for the enhancement of the amenity and health of passengers. Many researchers have studied it not for train but for building. Thermal comfort in Rolling Stock is function of temperature, relative humidity, air current, radiation temperature, etc. So, in this study, we have performed thermal environment in rolling stock(Electric motor car, Saemaeul, Mugunghwa train), and verified the relation between the PMV from Nov.2007 and Feb.2008. As a result, the average PMV value for each trains are 0.2, -0.3 Electric motor car, 0.5, 0.1, 0.1, 1.1 for Mugunghwa, 0.3, 0.5 for Saemaeul.

  • PDF

Analysis on Thermal Environment in the Rotunda of New National Museum of Korea (새 국립중앙박물관 로튠다에서의 열환경 분석)

  • 이승철;조영진;김두성;이재헌;김홍범
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.1
    • /
    • pp.32-39
    • /
    • 2003
  • Thermal comfort in the Rotunda which is high wide visiting space of the new national museum of Korea has been numerically investigated in this paper. To evaluate thor-mal comfort of the Rotunda, well-known indices, PMV and PPD were introduced. The results of present investigation show that thermal comfort is satisfied at the breathing zone of the visiting space. However a thermal stratification with $9^{\circ}C$ of temperature difference occurs along the height of the Rotunda which makes the thermal environment worse. For example, the PPD value reaches up to 50% in the 6th floor connection passage. Consequently, additional HVAC design factors should be considered in order to reduce the large thermal stratification.

Environmental Monitoring Using Comfort Sensing System

  • Na, Dae-Suk;Kang, Jeong-Ho;Park, Se-Kwang
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.24-33
    • /
    • 2003
  • This research is about a comfort sensing system for human environmental monitoring using a one-bodied humidity and temperature sensor and an air flow sensor. The thermal comfort that a human being feels in indoor environment has been known to be influenced mostly by six parameters, i.e. air temperature, radiation, air flow, humidity, activity level and clothing thermal resistance. Considering an environmental monitoring, we have designed and fabricated a one-bodied humidity and temperature sensor and an air flow sensor that detect air relative humidity, temperature and air flow in human environment using surface micromachining technologies. Micro-controller calculates a PMV (predicted mean vote) and CSV (comfort sensing vote) with sensing signals and display a PMV on LCD (liquid crystal display) for human comfort on indoor climate. Our work has demonstrated that a comfort sensing system can provide an effective means of measuring and monitoring the indoor comfort sensing index of a human being. Experimental results with simulated environment clearly suggest that our comfort sensing system can be used in many applications such as air conditioning system, feedback controlling in automobile, home and hospital etc..