• Title/Summary/Keyword: PMMA plate

Search Result 57, Processing Time 0.022 seconds

Development of New Micro Pattern Fabrication Process by U sing Isostatic Pressing (정수압을 이용한 미세 패턴 전사 신공정 개발)

  • Seol, J.W.;Joo, B.Y.;Rhim, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.267-270
    • /
    • 2009
  • In the present investigation, we are newly developing a new forming process which can fabricate micro patterns on large-area polymeric substrates for high speed mass production. The key idea of the new process is to pressurize multiple vacuum-packed substrate-mold stacks above the glass transition temperature ($T_g$) of the polymeric substrates. The new process is thought to be promising micro-pattern fabrication technique in three aspects; firstly, isostatic pressing ensures the uniform micro-pattern replicating condition regardless of the substrate area. Secondly, the control of forming condition such as temperature and pressure can realize well-defined process condition exploited in the conventional hot embossing research field. Thirdly, multiple substrates can be patterned at the same time. A prototype forming machine for the new process was developed with the design consideration realizing the present idea. With a developed machine, micro prismatic array patterns with 50 um in size were successfully made on the $380{\times}300{\times}6\;mm$ PMMA plate.

  • PDF

Peridynamic analysis of dynamic fracture behaviors in FGMs with different gradient directions

  • Kou, Miaomiao;Bi, Jing;Yuan, Binhang;Wang, Yunteng
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.339-356
    • /
    • 2020
  • In this article, a developed bond-based peridynamic model for functionally graded materials (FGMs) is proposed to simulate the dynamic fracture behaviors in FGMs. In the developed bond-based peridynamic model for FGMs, bonds are categorized into three different types, including transverse directionally peridynamic bond, gradient directionally peridynamic bond and arbitrary directionally peridynamic bond, according to the geometrical relationship between directions of peridynamic bonds and gradient bonds in FGMs. The peridynamic micromodulus in the gradient directionally and arbitrary directionally peridynamic bonds can be determined using the weighted projection method. Firstly, the standard bond-based peridynamic simulations of crack propagation and branching in the homogeneous PMMA plate are performed for validations, and the results are in good agreement with the previous experimental observations and the previous phase-field numerical results. Then, the numerical study of crack initiation, propagation and branching in FGMs are conducted using the developed bond-based peridynamic model, and the influence of gradient direction on the dynamic fracture behaviors, such as crack patterns and crack tip propagation speed, in FGMs is systematically studied. Finally, numerical results reveal that crack branching in FGMs under dynamic loading conditions is easier to occur as the gradient angle decreases, which is measured by the gradient direction and direction of the initial crack.

Effect of Processing Parameters in Surface Machining of Plastic Materials (플라스틱 소재의 표면가공 중 공정조건의 영향)

  • Han, Chang Mo;Lee, Bong-Kee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.1-7
    • /
    • 2016
  • In the present study, a plastic surface end-milling was implemented to investigate the effects of processing parameters on surface quality. The end milling can be considered an efficient method for rapid prototyping of thermoplastic bio-systems since it exhibits several beneficial functions including short fabrication time and high dimensional accuracy. In this regard, putative biocompatible thermoplastic materials, such as PMMA, PET, and PC, were chosen as workpiece materials. Among the relevant processing parameters influencing the surface quality of the final product, depth of cut, feed rate, and spindle speed were considered in the present study. The roughness of surfaces machined under various conditions was measured to elucidate the effect of each parameter. We found that the cut depth was the most significant factor. Heat generation during machining also had a remarkable effect. From these investigations, an appropriate combination of processing conditions specific to each type of use and end-product could be found. This optimization can be useful in end-milling of thermoplastic bio-systems.

Effect of scattered x-rays on subject contrast and image sharpness

  • Arimura, Hidetaka;Date, Takuji;Morikawa, Kaoru;Kubota, Hideaki;Matsumoto, Masao;Kanamori, Hitoshi
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 1999.11a
    • /
    • pp.278-281
    • /
    • 1999
  • The purpose of this study is to investigate the effect of the scattered x-rays on the subject contrast and image sharpness for various tube voltages. For the purpose, we measured the scatter-to-primary ratio(SPR) for the tube voltages f 50 to 100kV and obtained the tube voltage dependence of the subject contrast of an aluminum plate in a polymethyl methacrylate(PMMA) phantom. Furthermore, the overall modulation transfer functions(MTFs), which consist of MTFs of a screen-film system and scatter FTMs, were obtained for tube voltages of 50 to 100 kV. The subject contrast decreased with the tube voltage due to that the SPR increased with the tube voltage and that the difference in effective linear attenuation coefficients between the object and its surroundings decreased with the tube voltage. The maximum frequency of the overall MTF decreased from about 2 mm$\^$-1/ to 1 mm$\^$-1/ with the tube voltage increasing from 50 to 100 kV.

  • PDF

반타원 표면균열의 피로성장 거동에 관한 연구

  • 최용식;양원호;방시항
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.916-922
    • /
    • 1986
  • This paper presents the preliminary results of an experimental study on surface crack growth under fatigue loadings. The objective of this paper is to assess the effect of the initial crack size on crack propagation behaviors. Transparent PMMA plate speciments with shallow circular arc notch were used. Crack growth behaviors were observed and measured in two directions by travelling microscopes. The fatigue crack initiated at the deepest part on the initial arc shaped notch and then propagated to depth direction as well as spreading gradually along the notch tip. A considerable number of cycles was needed until the depth crack spreaded to the surface notch tip. When the fatigue crack reached the surface notch tip the crack front became an approximate semi-ellipse, primary semi-elliptical crack. Test results suggest that the relationships between fatigue crack growth rate and stress intensity factor range in both directions can be expressed by power law (Paris) and that relationship in width direction depends upon the crack ratios a$_{1}$/b$_{1}$, of the primary semi-elliptical crack. The relationship between the nondimensional crack lengths in both directions can be represented as the formula: (a/t)$^{n}$ =B(2b/W+A) where n and A are constants and B is seems to be depended upon the crack ratio a$_{1}$/b$_{1}$.

A CT Simulator Phantom for Geometrica1 Test (CT 시뮬레이터의 기하학적 성능평가용 팬톰)

  • Min, Chul-Kee;Yi, Byong-Yong;Ahn, Seung-Do;Choi, Eun-Kyung;Chang, Hye-Sook
    • Radiation Oncology Journal
    • /
    • v.18 no.4
    • /
    • pp.337-344
    • /
    • 2000
  • Purpose :To design and test test CT simulator phantom for geometrical test. Materials and Methods : The PMMA phantom was designed as a cylinder which is 20 cm in diameter and 24 cm in length, along with a 25$\times25\times31cm^{3}$ rectangular parallelepiped. Radio-opaque wires of which diameter is 0.8 mm are attached on the other surface of the phantom as a spiral. The rectangular phantom was made of four 24$\times24\times0.5 cm^{3}$ square plates and each plate had a 24$\times24 cm^{2}$, 12$\times12cm^{2}$, 6$\times6 cm$^{2}$ square line. The squares were placed to face the cylinder at angles 0 $^{\circ}$ , 15 $^{\circ}$ , 30 $^{\circ}$ ,respectively. The rectangular phantom made it possible to measure the field size, couch angle, the collimator angle, the isocenter shift and the SSD, the measurements of the gantry angle from the cylindrical part. A virtual simulation software, AcOSim, offered various conditions to perform virtual simulations and these results were used to perform the geometrical Quality assurance of CT simulator. Results : A 0.3$\~$0.5 mm difference was found on the 24 cm field size which was created with the DRR measurements obtained by scanning of the rectangular phantom. The isocenter shift, the collimator rotation, the couch rotation, and the gantry rotation test showed 0.5$\~$1 mm, 0.5$\~$l$^{\circ}$ 0.5$\~$ 1$^{\circ}$ , and 0.5-1 $^{\circ}$ differences, respectively. We could not find any significant differences between the results from the two scanning methods. Conclusion :The geometrical test phantom developed in the study showed less than 1 mm (or 1 $^{\circ}$ ) differences. The phantom could be used as a routine geometrical QC/QA tools, since the differences are within clinically acceptable ranges.

  • PDF

Contrast reference values in panoramic radiographic images using an arch-form phantom stand

  • Shin, Jae-Myung;Lee, Chena;Kim, Jo-Eun;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-Suk;Choi, Soon-Chul;Lee, Sam-Sun
    • Imaging Science in Dentistry
    • /
    • v.46 no.3
    • /
    • pp.203-210
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate appropriate contrast reference values (CRVs) by comparing the contrast in phantom and clinical images. Materials and Methods: Phantom contrast was measured using two methods: (1) counting the number of visible pits of different depths in an aluminum plate, and (2) obtaining the contrast-to-noise ratio (CNR) for 5 tissue-equivalent materials (porcelain, aluminum, polytetrafluoroethylene [PTFE], polyoxymethylene [POM], and polymethylmethacrylate [PMMA]). Four panoramic radiographs of the contrast phantom, embedded in the 4 different regions of the arch-form stand, and 1 real skull phantom image were obtained, post-processed, and compared. The clinical image quality evaluation chart was used to obtain the cut-off values of the phantom CRV corresponding to the criterion of being adequate for diagnosis. Results: The CRVs were obtained using 4 aluminum pits in the incisor and premolar region, 5 aluminum pits in the molar region, and 2 aluminum pits in the temporomandibular joint (TMJ) region. The CRVs obtained based on the CNR measured in the anterior region were: porcelain, 13.95; aluminum, 9.68; PTFE, 6.71; and POM, 1.79. The corresponding values in the premolar region were: porcelain, 14.22; aluminum, 8.82; PTFE, 5.95; and POM, 2.30. In the molar region, the following values were obtained: porcelain, 7.40; aluminum, 3.68; PTFE, 1.27; and POM, - 0.18. The CRVs for the TMJ region were: porcelain, 3.60; aluminum, 2.04; PTFE, 0.48; and POM, - 0.43. Conclusion: CRVs were determined for each part of the jaw using the CNR value and the number of pits observed in phantom images.