• Title/Summary/Keyword: PMMA material

Search Result 233, Processing Time 0.026 seconds

COIN형 리튬 폴리머전지의 충방전 특성

  • 박수길;박종은;손원근;이흥기;김상욱;이주성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.497-500
    • /
    • 1997
  • Conducting polymer is new material in lithium secondary battery. conducting polymer has a lot of merit which is flexible and good handing so that this material is used battery system, solid polymer electrolytes airs used PEO(Polyethylene oxide) and PEO/PMMA branding material adding by liquid plasticizer or lithium salt polymer electrolyte which is added liquid plasticizer, lithium salt decreased the crystallity and thermal stability is over than 13$0^{\circ}C$. it is very useful tn apply lithium secondary battery system.

  • PDF

Electrochemical Properties of Lithium-Ion Polymer Battery with PMMA IPN-Based Gel Polymer Electrolyte (PMMA IPN계 겔폴리머전해질을 채용한 리튬이온폴리머전지의 전기화학적 특성)

  • 김현수;신정한;나성환;엄승욱;문성인;김상필
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.994-1000
    • /
    • 2003
  • In this study, gel polymer electrolytes (GPE) with semi-interpenerating network of poly (methyl methacrylate) and hexanediol dimethacrylate were synthesized and their electrochemical performances were evaluated. LiCoO$_2$/GPE/graphite cells were prepared and their performances depending on discharge currents and temperatures were evaluated. The precursor containing 5 vol% curable mixture had a low viscosity relatively. GPE showed good electrochemical stability up to potential of 4.8 V vs. Li/Li$\^$+/. Ionic conductivity of the gel polymer electrolyte at room temperature and -20$^{\circ}C$ was ca. 5.9 and 1.4${\times}$10$\^$-3/ Scm$\^$-1/, respectively. LiCoO$_2$/GPE/graphite cells showed good rate capability, low-temperature performance and cycleability.

Space Charge Analysis in Polymers Irradiated by Electron Beam (E-빔 조사에 의한 폴리머의 공간전하 해석)

  • Yun, Ju-Ho;Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.309-310
    • /
    • 2007
  • Spacecrafts such as most of commercial satellites that are operating in the geostationary orbit can be subjected to intense irradiation by charged particles. The surface made of dielectric materials can therefore become probable sites for damaging electrostatic discharges. Thanks to a specially equipped chamber, the spatial environment can be reproduced experimentally in the laboratory. In this paper, the behavior of high energy electrons injected in polymers such as PolyMethylMetaAcrylate (PMMA) and Kapton is studied. Results obtained by surface potential technique, pulse-electro acoustic device and a cell based on the split Faraday cup system are analyzed and discussed.

  • PDF

Effect of Electrical Field on Blockcopolymer Patterning (블록공중합체 패턴 형성시 전계에 의한 영향)

  • Hwang, Sung-Min;Kim, Kyoung-Seob;Kim, Nam-Hoon;Roh, Yong-Han
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.63-64
    • /
    • 2007
  • Polystyrene-block-polymethyl methacrylate (PS-b-PMMA) can pattern nanoscale structures over large areas. However these patterns have a short-range order. These short-range order limits their utility in some applications. Consequently, we have to overcome this limitation of block-copolymer. In this study we added a electrical field to the standard block-copolymer patterning method for long-range ordered arrays of nanostructures. This method is conformed by annealing a block copolymer with applied voltages. It is very simple method that do not have any additional hour. In this reason it can be applied easily for other nanostructure fabrications. This method opens up a new route to the controlled phase separation of block copolymers with precise place of the nanostructures.

  • PDF

EFFECTS Of VARIOUS SILANE COUPLING AGENTS ON THE STRENGTH AND THE SURFACE ROUGHNESS OF GLASS FIBER-ADDED PMMA RESIN (수종의 실란처리 유리섬유를 첨가한 의치상용 레진의 강도변화 및 마모전.후 표면성상분석)

  • Lee, Sang-Il;Kim, Chang-Whe;Lim, Young-Jun;Kim, Myung-Joo;Yun, Suk-Dae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.4
    • /
    • pp.457-468
    • /
    • 2007
  • Statements of problem: The fracture of acrylic resin dentures remains an unsolved problem. Therefore, many investigations have been performed and various approaches to strengthening acrylic resin, for example, the reinforcement of heat-cured acrylic resin using glass fibers, have been suggested over the years. Silane is important for bonding between glass fiber and resin. Purpose: The aim of the present study was to investigate the effect of various silane on the strength of PMMA resin and roughness of resin-glass fiber complex after abrasion test. Material and methods: 3mm glass fiber (Chopped strand, Hankuk fiber Co., Milyang, Korea) was treated with 3 kinds of silane (MPS, EPS, APS) (Sila-ace, Chisso chemical, Tokyo, Japan) and mixed with PMMA resin(Vertex RS, Vertex Dental B.V., Zeist, Netherlands). Transverse strength and Young's modulus was measured using Instron (Instron model 4466, Instron, Massachusetts, USA). After abrasion test (The 858 Mini Bionix II Test System, MTS System Co., Minnesota, USA) surface roughness was evaluated using tester (Form Talysurf plus, Taylor Hopson Ltd., Leicester England). Examination of scanning electron microscope was also performed. Results: Within this study, the following conclusions were drawn. 1. Surface treatment of glass fiber with MPS and APS increased transverse strength of PMMA resin complex, but surface treatment with EPS decreased transverse strength of PMMA resin complex (p<0.05). 2. Silane treated glass fiber increased Young's modulus of PMMA resin complex compared to desized glass fiber (p<0.05). 3. Roughness increased after abrasion test in case of PMMA resin reinforced with desized glass fiber (p<0.05). 4. Roughness change was not observed after abrasion test in case of PMMA resin reinforced with silane treated glass fiber (p>0.05).

Wettability of denture relining materials under water storage over time

  • Jin, Na-Young;Lee, Ho-Rim;Lee, Hee-Su;Pae, Ahran
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • STATEMENT OF PROBLEM. Poor wettability of denture relining materials may lead to retention problems and patient discomfort. PURPOSE. Purpose of this study is to compare and evaluate wettability of nine denture relining materials using contact angle measurements under air and water storage over time. MATERIAL AND METHODS. Nine denture relining materials were investigated in this study. Two heat-curing polymethyl-methacrylate(PMMA) denture base materials: Vertex RS, Lang, one self-curing polyethyl-methacrylate(PEMA) chairside reline resin: Rebase II, six silicone relining materials: Mucopren soft, Mucosoft, $Mollosil^{{R}}$ plus, Sofreliner Touch, GC $Reline^{TM}$ Ultrasoft, Silagum automix comfort were used in this experiment. Contact angles were measured using high-resolution drop shape analysis system(DSA 10-MK2, KRUESS, Germany) under three conditions(in air after setting, 1 hour water storage, and 24 hours water storage). Nine materials were classified into three groups according to material composition(Group 1: PMMA, Group 2: PEMA, Group 3: Silicone). Mean values of contact angles were compared using independent samples t-test and one-way ANOVA, followed by a Scheffe's post hoc analysis($\alpha$=0.01). RESULTS. Contact angles of materials tested after air and water storage increased in the following order: Group 1(PMMA), Group 2(PEMA), Group 3(Silicone). Heat-cured acrylic denture base resins had more wettability than silicone relining materials. Lang had the highest wettability after 24 hours of water storage. Silicone relining materials had lower wettability due to their hydrophobicity. Wettability of all denture relining materials, except Rebase II and $Mollosil^{{R}}$ plus, increased after 24 hours of water storage. CONCLUSIONS. Conventional heat-cured resin showed the highest wettability, therefore, it can be suggested that heat-cured acrylic resin is material of choice for denture relining materials.

Influence of surface treatments and repair materials on the shear bond strength of CAD/CAM provisional restorations

  • Jeong, Ki-Won;Kim, Sung-Hun
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.2
    • /
    • pp.95-104
    • /
    • 2019
  • PURPOSE. To evaluate the effect of surface treatments and repair materials on the shear bond strength and to measure the fracture toughness of CAD/CAM provisional restoration materials. MATERIALS AND METHODS. Four CAD/CAM (3D printing: Nextdent C&B and ZMD-1000B Temporary, CAD/CAM resin block: Yamahachi PMMA disk and Huge PMMA block) and four conventional (monometacrylate: Jet and Alike, dimetacrylate: Luxatemp and Protemp 4) materials were selected to fabricate disk-shaped specimens and divided into six groups according to surface treatment (n=10). CAD/CAM materials were repaired with Jet or Luxatemp, while conventional materials were repaired with their own materials. The shear bond strength was measured by using universal testing machine. Ten rectangular column-shaped specimens for each material were fabricated to measure the fracture toughness by single edge v notched beam technique. Statistical analysis was performed by one-way ANOVA. RESULTS. The highest shear bond strength of CAD/CAM materials was achieved by SiC paper + sandblasting. It was also accomplished when repairing 3D printing materials with Luxatemp, and repairing CAD/CAM resin blocks with Jet. Yamahachi PMMA disk showed the highest fracture toughness. Nextdent C&B showed the lowest fracture toughness value but no statistically significant difference from Alike and Luxatemp (P>.05). CONCLUSION. In order to successfully repair the CAD/CAM provisional restoration, mechanical surface treatment and appropriate repair material according to the CAD/CAM material type should be selected. The CAD/CAM provisional materials have proper mechanical properties for clinical use as compared to conventional materials.

A STUDY ON THE ADHESION OF A SOFT LINER CONTAINING 4-META TO THE BASE METAL ALLOY AND ITS VISCOELASTIC PROPERTY

  • Park Hyun-Joo;Kim Chang-Whe;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.6
    • /
    • pp.732-746
    • /
    • 2003
  • Statement of problem. Soft lining materials, also referred to as tissue conditioning materials, tissue heating materials, relining materials, soft liners or tissue conditioners, were first introduced to dentistry by a plastic manufacturer in 1959. Since the introduction of the materials to the dental field, their material properties have been continually improved through the effort of many researchers. Soft lining materials have become widely accepted, particularly by prosthodontists, because of their numerous clinical advantages and ease of manipulation. Unfortunately, few reports have been issued upon the topic of increasing the bond strength between the base metal alloy used in cast denture bases and PMMA soft liner modified with 4-META, nor upon the pattern of debonding and material change in wet environment like a intra oral situation. Purpose. The purposes of this study were comparing the bond strength between base metal alloy used for the cast denture bases and PMMA soft liner modified with 4-META, and describing the pattern of debonding and material property change in wet environment like the intraoral situation. Material and Methods. This study consisted of four experiments: 1. The in vitro measurement of shear bond strength of the adhesive soft liner. 2. The in vitro measurement of shear bond strength of the adhesive soft liner after 2 weeks of aging. 3. A comparison of debonding patterns. 4. An evaluation the Relation time of modified soft liner. The soft liner used in this study was commercially available as Coe-soft (GC America.IL.,USA), which is provided in forms of powder and liquid. This is a PMMA soft liner commonly used in dental clinics. The metal primer used in this study was 4-META containing primer packed in Meta fast denture base resin (Sun Medical Co., Osaka, Japan). The specimens were formed in a single lap joint desist which is useful for evaluating the apparent shear bond strength of adhesively bonded metal plate by tensile loading. Using the $20{\times}20mm$ transparent grid, percent area of adhesive soft liner remaining on the shear area was calculated to classify the debonding patterns. To evaluate the change of the initial flow of the modified adhesive soft liner, the gelation time was measured with an oscillating rheometer (Haake RS150W/ TC50, Haake Co., Germany). It was a stress control and parallel plate type with the diameter of 35mm. Conclusion. Within the conditions and limitations of this study, the following conclusions were drawn as follows. 1. There was significant increase of bond strength in the 5% 4-META, 10% 4-META containing groups and in the primer coated groups versus the control group(P<0.05). 2. After 2 weeks of aging, no significant increase in bond strength was found except for the group containing 10% 4-META (P<0.05). 3. The gelation times of the modified soft liner were 9.3 minutes for the 5% 4-META containing liner and 11.5 minutes for the 10% 4-META liner. 4. The debonding patterns of the 4-META containing group after 2 weeks of aging were similar to those of immediaely after preparation, but the debonding pattern of the primer group showed more adhesive failure after 2 weeks of aging.

Experimental Study on Smoke Production and Smoke Generation in Thermoplastic Resins Based on PP, PMMA, and PVC (열가소성 수지(PP, PMMA, PVC)의 연기생성 및 발생에 관한 실험적 연구)

  • Hwang, Euy-Hong;Choi, Don-Mook
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.1-7
    • /
    • 2020
  • Due to the complexity and large size of buildings, plastic resin is widely used as a building material. Accordingly, the occurrence of fires caused by plastics is increasing. Due to the nature of plastic resin fires, the amount of damage to properties and human life caused by combustion products such as smoke are large, and these damages are related to smoke production and smoke generation. Therefore, this study reviews smoke measurement methods and laws on domestic buildings and fire services. Experiments were conducted based on three smoke-related test standards (ISO 5660-1, ISO 12136, ASTM E 662). The experiment results indicate a total smoke production and generation by PP, PVC, and PMMA of 43.27, 32.83, and 12.33 ㎡, and 27.855, 9.599, and 6.975 g, respectively.

Bracket bonding to polymethylmethacrylate-based materials for computer-aided design/manufacture of temporary restorations: Influence of mechanical treatment and chemical treatment with universal adhesives

  • Goracci, Cecilia;Ozcan, Mutlu;Franchi, Lorenzo;Di Bello, Giuseppe;Louca, Chris;Vichi, Alessandro
    • The korean journal of orthodontics
    • /
    • v.49 no.6
    • /
    • pp.404-412
    • /
    • 2019
  • Objective: To assess shear bond strength and failure mode (Adhesive Remnant Index, ARI) of orthodontic brackets bonded to polymethylmethacrylate (PMMA) blocks for computer-aided design/manufacture (CAD/CAM) fabrication of temporary restorations, following substrate chemical or mechanical treatment. Methods: Two types of PMMA blocks were tested: $CAD-Temp^{(R)}$ (VITA) and $Telio^{(R)}$ CAD (Ivoclar-Vivadent). The substrate was roughened with 320-grit sandpaper, simulating a fine-grit diamond bur. Two universal adhesives, Scotchbond Universal Adhesive (SU) and Assure Plus (AP), and a conventional adhesive, Transbond XT Primer (XTP; control), were used in combination with Transbond XT Paste to bond the brackets. Six experimental groups were formed: (1) $CAD-Temp^{(R)}/SU$; (2) $CAD-Temp^{(R)}/AP$; (3) $CAD-Temp^{(R)}/XTP$; (4) $Telio^{(R)}$ CAD/SU; (5) $Telio^{(R)}$ CAD/AP; (6) $Telio^{(R)}$ CAD/XTP. Shear bond strength and ARI were assessed. On 1 extra block for each PMMA-based material surfaces were roughened with 180-grit sandpaper, simulating a normal/medium-grit ($100{\mu}m$) diamond bur, and brackets were bonded. Shear bond strengths and ARI scores were compared with those of groups 3, 6. Results: On $CAD-Temp^{(R)}$ significantly higher bracket bond strengths than on $Telio^{(R)}$ CAD were recorded. With XTP significantly lower levels of adhesion were reached than using SU or AP. Roughening with a coarser bur resulted in a significant increase in adhesion. Conclusions: Bracket bonding to CAD/CAM PMMA can be promoted by grinding the substrate with a normal/medium-grit bur or by coating the intact surface with universal adhesives. With appropriate pretreatments, bracket adhesion to CAD/CAM PMMA temporary restorations can be enhanced to clinically satisfactory levels.