• Title/Summary/Keyword: PMMA(Poly-methyl methacrylate)

Search Result 240, Processing Time 0.023 seconds

Surface Structure of Blend Films of Styrene/Acrylonitrile Copolymer and Poly(methyl methacrylate)(PMMA) or Hydrolyzed PMMA

  • 이원기;K. Tanaka;A. Takahara;T. Kajiyama;하창식
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.9
    • /
    • pp.958-961
    • /
    • 1997
  • The compatibility and the surface structure of blends of poly(styrene-co-acrylonitrile) (SAN) with either poly(methyl methacrylate) (PMMA) or hydrolyzed PMMA (H-PMMA) were studied in terms of film thickness, interaction, and surface free energy difference on the basis of X-ray photoelectron spectroscopy (XPS), attenuated total reflection Fourier transform IR spectroscopy and atomic force microscopy. The XPS measurement showed that the surface enrichment of (PMMA/SAN) blends with different AN contents of SAN and with different carboxyl acid contents of PMMA was dependent on the molecular interaction, the surface free energy difference between components and the sample preparation history. It was found that the compatibility of H-PMMA and SAN was reduced with increasing carboxyl acid content of PMMA.

Tribological Behavior of Thin PMMA (Poly Methyl Methacrylate) Coating Layers (PMMA(Poly Methyl Methacrylate) 박막 코팅 층의 마찰 및 마멸 거동)

  • Kang S. H;Kim Y. S
    • Transactions of Materials Processing
    • /
    • v.13 no.8
    • /
    • pp.716-722
    • /
    • 2004
  • Effects of sliding speed, applied load, and thickness of PMMA (Poly Methyl Methacrylate) coating layers on their dry sliding frictional and wear behavior were investigated. Sliding wear tests were carried out using a pin-on-disk wear tester. The PMMA layer was coated on Si wafer by a spin coating process with two different thicknesses, $1.5\mu\textrm{m}$ and $0.8\mu\textrm{m}$. AISI 52100 bearing steel balls were used as a counterpart of the PMMA coating during the wear. Normal applied load and sliding speed were varied. Wear mechanisms of the coatings were investigated by examining worn surfaces using an SEM. Friction coefficient of the coatings decreased with the increase of the applied load. Both adhesion and deformation of the coating determined the coefficient. The thicker PMMA layer with the thickness of $1.5mutextrm{m}$ showed lower friction coefficient than the thinner layer under most test conditions. Effects of sliding speed and applied load on the frictional behavior were varied depending on the thickness of the coating layer.

Preparation of Poly(methyl methacrylate)/Na-MMT Nanocomposites via in-Situ Polymerization with Macroazoinitiator

  • Jeong Han Mo;Ahn Young Tae
    • Macromolecular Research
    • /
    • v.13 no.2
    • /
    • pp.102-106
    • /
    • 2005
  • Poly(methyl methacrylate) (PMMA)/sodium montmorillonite (Na-MMT) nanocomposites were prepared with a novel method utilizing a macroazoinitiator (MAI). To induce the intergallery polymerization of methyl methacrylate (MMA), the MAI containing a po1y(ethylene glycol) (PEG) segment was intercalated between the lamellae of Na-MMT and swelled with water to enhance the diffusion of MMA into the gallery. The structure of the nanocomposite was examined using X-ray diffraction and transmission electron microscopy, and the thermal properties were examined using differential scanning calorimetry and thermogravimetry. The PMMA/Na-MMT nanocomposite prepared by intergallery polymerization showed a distinct enhancement of its thermal properties; an approximately $30^{\circ}C$ increase in its glass transition temperature and an $80\sim100^{\circ}C$ increase in its thermal decomposition temperature for a $10\%$ weight loss.

Surface Characterization of Poly(vinylidene fluoride) and Poly(methyl methacrylate) Blend Coatings Prepared by Dispersion Coating (분산코팅에 의해 형성된 Poly(vinylidene fluoride)와 Poly(methyl methacrylate) 블렌드 코팅층의 표면 특성)

  • Seok, Kwang Hee;Ha, Jong-Wook;Lee, Soo-Bok;Park, In Jun;Kim, Hyung Joong
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.177-183
    • /
    • 2013
  • Surface properties such as morphology, crystalline structure, and chemical composition of poly(vinylidene fluoride) (PVDF)/poly(methyl methacrylate) (PMMA) blend coatings prepared by dispersion coating on poly(ethylene terephthalate) (PET) film have been investigated. It was observed that the surface properties were greatly influenced by the coating temperature and blend composition according to SEM, ATR-FTIR and XPS analysis. The typical surface morphology of ${\alpha}$-crystalline structure of PVDF could be observed when the coating temperature was lower than $120^{\circ}C$ or the amount of PVDF was higher than 80 wt% in the blend. Otherwise, the crystalline structure was changed from ${\alpha}$-crystal to ${\gamma}$-crystal or amorphous state. Based on the XPS analysis, the surface segregation of PVDF chains in the blend coating was confirmed.

A Study on Thermal Degradation of Poly (methyl methacrylate) (PMMA) using TGA (TGA를 이용한 Poly(methyl methacrylate) (PMMA)의 열분해 특성 연구)

  • Kim, Sang-Guk;Choi, Hyun-Gyu;Eom, Yu-Jin;Kim, Joo-Sik
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.10a
    • /
    • pp.360-367
    • /
    • 2005
  • PMMA has been used extensively worldwide as industrial and construction materials due to its excellent material properties. When PMMA is subject to thermal degradation, unit of monomers are detached from polymer chain and this phenomena is called unzip reaction. Therefore, PMMA thermally degrades into its monomer. Characteristics of thermal degradation of PMMA has been investigated using TGA in this research as a basic study for recovery of MMA.

  • PDF

Gamma radiation shielding properties of poly (methyl methacrylate) / Bi2O3 composites

  • Cao, Da;Yang, Ge;Bourham, Mohamed;Moneghan, Dan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2613-2619
    • /
    • 2020
  • This work investigated the gamma-ray shielding performance, and the physical and mechanical properties of poly (methyl methacrylate) (PMMA) composites embedded with 0-44.0 wt% bismuth trioxide (Bi2O3) fabricated by the fast ultraviolet (UV) curing method. The results showed that the addition of Bi2O3 had significantly improved the gamma shielding ability of PMMA composites. Mass attenuation coefficient and half-value layer were examined using five gamma sources (Cs-137, Ba-133, Cd-109, Co-57, and Co-60). The high loading of Bi2O3 in the PMMA samples improved the micro-hardness to nearly seven times that of the pure PMMA. With these enhancements, it was demonstrated that PMMA/Bi2O3 composites are promising gamma shielding materials. Furthermore, the fast UV curing exerts its great potential in significantly shortening the production cycle of shielding material to enable rapid manufacturing.

Evolution of Phase Morphology During Compounding of Ternary Blends in a Twin Screw Extruder (이축 압출기를 이용한 혼련에서 삼성분계 블렌드의 상구조 형성과정)

  • Kim, Hyungsu;Lee, Shi-Choon;D .Y. Yu;C. G. Gogos
    • The Korean Journal of Rheology
    • /
    • v.10 no.4
    • /
    • pp.247-255
    • /
    • 1998
  • The morphological changes during melt compounding of ternary blends containing various combinations of acrylonitrile-butadiene-styrene(ABS), methyl methacrylate-butadiene-ethyl acrylate(MBE), styrene-acrylonitrile(SAM) copolymers, and poly(methyl methacrylate)(PMMA) as dispersed components in a fixed matrix of polycarbonate(PC) have been investigated. Depending on the composition of the blend, MBE particles and PMMA phase appear to locate at the PC-SAN interface under the influence of interfacial tensions and motion induced coalescence. The interfacial viscosity is found to be a critical factor that affects the amount of coalescence.

  • PDF

Synthesis and Charaterization of Poly(styrene-b-methyl Methacrylate) by Free Radical Telomerization (Ⅰ) (자유라디칼 Telomerization 에 의한 스티렌메타크릴산메틸 Block 혼성중합체의 합성 및 분석 (제1보))

  • Jung Hag Park;Gil Soo Sur;Sam Kwon Choi
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.259-265
    • /
    • 1980
  • Poly (styrene-b-methyl methacrylate) (PS-b-PMMA) was synthesized by free radical telomerization: the telomerization of styrene with $CCI_4$ by using AIBN as initiator followed by a second telomerization of methyl methacrylate using $CCI_3$ end group of the resulting polymer as the macrotelogen, with AIBN initiation, gave the styrene-methyl methacrylate block copolymer. The effects of the concentration of the macrotelogen, the concentration of monomer, the molecular weight of the macrotelogen, the reaction temperature and the concentration of the solvent on the formation of the block copolymer were investigated. Block copolymers containing up to 10 weight percent PMMA were obtained by adjusting the reaction conditions.

  • PDF

Study on The Thermal Properties of Poly(methyl methacrylate) and Poly($\alpha$-methylstyrene-co-acrylonitrile) Mix tures (Poly(methyl methacrylate)와 Poly($\alpha$-methylstyrene-co-acrylonitrile) 혼합물의 열적특성에 관한 연구)

  • Moon, Deog-Ju;Kim, Byung-Chul;Kim, Dong-Keun;Seul, Soo-Duk;Sohn, Jin-Eon
    • Elastomers and Composites
    • /
    • v.23 no.4
    • /
    • pp.289-298
    • /
    • 1988
  • The thermal degradation of poly(methyl methacrylate)(PMMA) and poly($\alpha$-methylstyrene-co-acrylonitrile)(SAN) mixtures were carried out using the thermogravimetry(TG) and differential scanning calorimetry(DSC) in the stream of nitrogen and air with 50 ml/min at the various heating rate from 4 to $20^{\circ}C/min$ and temperature from 20 to $500^{\circ}C$. The value of activation energies of thermal degradation determined by TG and DSC in the various PMMA/SAN mixtures were 34-54 kcal/mol in the stream of nitrogen. The value of activation energy of SAN 60% mixture were appeared high in comparison with addition rule. PMMA/SAN mixtures by the analysis of infrared spectrophotometer were decomposed by main chain scission in the stream of nitrogen.

  • PDF

Kinetic Study on the Thermal Degradation of Poly(Methyl Methacrylate) and Poly(Acrylonitrile Butadiene Styrene) Mixtures (Poly(methyl methacrylate)와 Poly(acrylonitrile butadiene styrene)와의 혼합에 의한 열분해속도에 관한 연구)

  • Moon, Deok-Ju;Kim, Dong-Keun;Seul, Soo-Duk
    • Elastomers and Composites
    • /
    • v.24 no.1
    • /
    • pp.11-18
    • /
    • 1989
  • The thermal degradation of Poly(methyl methacrylate) (PMMA) and poly(acrylonitrile butadiene styrene)(ABS) terpolymer as well as their mixtures were carried out using the thermogravimetry and differential scanning calorimetry(DSC) in the stream of nitrogen and air with 50 ml/min at the various heating rate from 4 to $20^{\circ}C/min$ and temperature from 200 to $300^{\circ}C$ The values of activation energies of thermal degradation determined by TG and DSC in the various PMMA/ABS mixtures were $34{\sim}58Kcal/mol,\;35{\sim}54Kcal/mol$ in the stream of nitrogen. The values of activation energy of ABS20% mixture was appeared high in camparison with addition rule. According to increasing the composition of ABS, the temperatures of glass transition and initial decomposition temperature were increased. PMMA/ABS mixtures by the analysis of infrared spectrophotometer were decomposed by main chain scission in the stream of nitrogen.

  • PDF