• Title/Summary/Keyword: PMIPv6 Networks

Search Result 74, Processing Time 0.03 seconds

Global Mobility Management Scheme for Seamless Mobile Multicasting Service Support in PMIPv6 Networks

  • Song, Myungseok;Cho, Jun-Dong;Jeong, Jong-Pil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.637-658
    • /
    • 2015
  • The development of multimedia applications has followed the development of high-speed networks. By improving the performance of mobile devices, it is possible to provide high-transfer-speed broadband and seamless mobile multicasting services between indoor and outdoor environments. Multicasting services support efficient group communications. However, mobile multicasting services have two constraints: tunnel convergence and handoff latency. In order to solve these problems, many protocols and handoff methods have been studied. In this paper, we propose inter local mobility anchor (inter-LMA) optimized handoff model for mobile multicasting services in proxy mobility IPv6 based (PMIPv6-based) networks. The proposed model removes the tunnel convergence issue and reduces the router processing costs. Further, it the proposed model allows for the execution of fast handoff operations with adaptive transmission mechanisms. In addition, the proposed scheme exhibits low packet delivery costs and handoff latency in comparison with existing schemes and ensures fast handoff when moving the inter-LMA domain.

A Study on Mobility Support in IP-based Sensor Networks (IP 기반 센서 네트워크에서 이동성 지원에 관한 연구)

  • Jung, Sung-Min;Kim, Tae-Kyung;Chung, Tai-Myoung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.736-739
    • /
    • 2011
  • IP 기반의 센서 네트워크인 6LoWPAN 은 IEEE 802.15.4 표준에 IPv6 를 적용하기 위해 제안되었다. 현재 IPv6 상에서 노드의 이동성을 지원하기 위한 기술로 MIPv6 와 PMIPv6 가 표준화 되었다. 6LoWPAN 에서 이동성을 지원하기 위해서 PMIPv6 를 적용하는 것이 MIPv6 를 적용하는 것보다 더 효율적이다. PMIPv6 기술의 특징은 기존의 MIPv6 에 비해 노드가 바인딩 메시지를 처리하지 않는 점이다. 따라서 노드의 부하를 줄일 수 있기 때문에 6LoWPAN 에 적합하다. 하지만 6LoWPAN 노드의 하드웨어적인 제약 사항을 고려해 볼 때, 기존의 PMIPv6 를 그대로 적용하기에는 무리가 있다. 그대로 적용한다면 PMIPv6 은 원 홉에 기반하고 있기 때문에 멀티 홉에 기반한 6LoWPAN 에는 적합하지 않다. 또한 기존에 정의되어 있는 RS 나 RA 메시지의 크기로 인해 멀티 홉 경로상의 각 단말에 많은 부하를 줄 수 있다. 본 논문에서는 위의 문제점을 해결하기 위해 6LoWPAN 에 적합한 RS 와 RA 메시지를 제안한다.

Performance Analysis of Cost-Effective Inter-LMA Domain Handover Scheme in PMIPv6 Networks with NEMO Supporting (NEMO를 지원하는 프록시 모바일 IPv6 네트워크에서 비용효과적인 LMA 도메인간 핸드오버 기법의 성능분석)

  • Yi, Yun-Su;Jeong, Jong-Pil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.201-210
    • /
    • 2012
  • Now, there are many mobile nodes are efficient and stable when they move to operate with variety techniques have emerged.Recently, there is a growing interest about PMIPv6(Proxy Mobile IPv6) and, in this proposal of essay is the based on the way to mobility support system will stand on the basis from PMIPv6 network to NEMO(Network Mobility). PMIPv6 is mobility support system from single domain, it actual network is composed with nested in a multiple domain structural system. The proposed technique in the domain of two or more, the LMA(Local Mobility Anchor) communication between LMA(Local Mobility Anchor) and MAG(Mobile Access Gateway) of movable domain can increase performance by handover delay and signaling.

Leveraging Proxy Mobile IPv6 with SDN

  • Raza, Syed M.;Kim, Dongsoo S.;Shin, DongRyeol;Choo, Hyunseung
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.460-475
    • /
    • 2016
  • The existing Proxy Mobile IPv6 suffers from a long handover latency which in turn causes significant packet loss that is unacceptable for seamless realtime services such as multimedia streaming. This paper proposes an OpenFlow-enabled proxy mobile IPv6 (OF-PMIPv6) in which the control of access gateways is centralized at an OpenFlow controller of a foreign network. The proposed OF-PMIPv6 separates the control path from the data path by performing the mobility control at the controller, whereas the data path remains direct between a mobile access gateway and a local mobility anchor in an IP tunnel form. A group of simple OpenFlow-enabled access gateways performs link-layer control and monitoring activities to support a comprehensive mobility of mobile nodes, and communicates with the controller through the standard OpenFlow protocol. The controller performs network-layer mobility control on behalf of mobile access gateways and communicates with the local mobility anchor in the Proxy Mobile IPv6 domain. Benefiting from the centralized view and information, the controller caches the authentication and configuration information and reuses it to significantly reduce the handover latency. An analytical analysis of the proposed OF-PMIPv6 reactive and proactive handover schemes shows 43% and 121% reduction in the handover latency, respectively, for highly utilized network. The results gathered from the OF-PMIPv6 testbed suggest similar performance improvements.

An Effective Multicast Services Mechanism for Proxy Mobile IPv6 Networks (PMIPv6 환경에서 효율적인 멀티캐스트 서비스 메커니즘)

  • Choi, Sung-Uk
    • Journal of Digital Contents Society
    • /
    • v.12 no.1
    • /
    • pp.11-21
    • /
    • 2011
  • The PMIPv6 protocol that has been recently presented as an alternative for the MIPV6 has been getting much persuasion by the system resource and the network bandwidth and the advancement of the network cost. we propose an effective scheduling for multicast services based on the PMIPv6 with hand-over mechanism. it provides an additional function that is able to change multicast join processes dynamically in accordance with MAG status. in order to evaluate the ability of the proposed scheme's We test the performance of hand-over and node join costs with similar techniques. The result of simulation shows improves about 13~35% of performance.

Analytical Approach of New Random-walk Based Mobility Management Scheme in IP-based Mobile Networks

  • Song, Myungseok;Cho, Jun-Dong;Jeong, Jongpil
    • International Journal of Advanced Culture Technology
    • /
    • v.2 no.1
    • /
    • pp.1-13
    • /
    • 2014
  • In next-generation wireless networks, provisioning of IP-based network architecture and seamless transmission services are very important issues for mobile nodes. For this reason, a mobility management mechanism to support global roaming is highly regarded. These technologies bring a broader life by using a global roaming account through the connection of multiple devices or technology to mobile users; they also provide real-time multimedia services. This paper presents a comprehensive performance analysis of fast handover for hierarchical mobile IPv6 (F-HMIPv6), hierarchical mobile IPv6 (HMIPv6), Proxy Mobile IPv6 (PMIPv6), and fast Proxy Mobile IPv6 (FPMIPv6) using the fluid-flow model and random-walk model. As a result, the location update cost of the PMIPv6 and FPMIPv6 is better than that of HMIPv6 and F-HMIPv6. These results suggest that the network-based mobility management technology is superior to the hierarchical mobility management technology in the mobility environment.

Adaptive Route Optimization for Proxy Mobile IPv6 Networks (Proxy Mobile Ipv6 네트워크에서의 적응적 경로 최적화)

  • Kim, Min-Gi;Lee, Su-Kyoung
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.3
    • /
    • pp.204-211
    • /
    • 2009
  • Proxy Mobile IPv6(PMIPv6) is that network-based mobility management protocol that network supports mobile node's mobility on behalf of the Mobile Node(MN). In PMIPv6 network, data packets from a Correspondent Node(CN) to a MN will always traverse the MN's Local Mobility Anchor(LMA). Even though, CN and MN might be located close to each other or within the same PMIPv6 domain. To solve this problem, several PMIPv6 Route Optimization(RO) schemes have been proposed. However, these RO schemes may result in a high signaling cost when MN moves frequently between MAGs. For this reason, we propose an adaptive route optimization(ARO) scheme. We analyze the performance of the ARO. Analytical results indicate that the ARO outperforms previous schemes in terms of signaling overhead.

3S: Scalable, Secure and Seamless Inter-Domain Mobility Management Scheme in Proxy Mobile IPv6 Networks (프록시 모바일 IPv6 네트워크에서 3S를 고려한 도메인간 이동성관리 기법)

  • Kang, Min;Jeong, Jong-Pil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.99-114
    • /
    • 2012
  • Proxy Mobile IPv6 (PMIPv6) has received considerable attention between telecommunications and the Internet communities and does not require active participation of the Mobile Node (MN) by way of network-based mobility management. The PMIPv6 domain is studying establishment in progress to support extensively a number of MN by using a low handover latency. In this research, we are propose a novel 3S scheme for building Scalable and Secure and Seamless PMIPv6 domains. In the proposed scheme, all of Mobility Access Gateway (MAG) are acting as the Local Mobility Anchor (LMA) and composing a virtual ring with another MAG. General hashing is used in the efficient distribution-mapping between each MN and the MN's LMA of all MAGs. And, MAG and MN are authenticated using the symmetric key. Through mathematical analysis, we verifies the safety, scalability, and seamless service for 3S. Also, we're propose a handover procedure of 3S and show better than the existing schemes in terms of handover latency.

LFH: Low-Cost and Fast Handoff Scheme in Proxy Mobile IPv6 Networks with Multicasting Support (프록시 모바일 IPv6 네트워크에서 멀티캐스팅을 지원하는 저비용의 빠른 이동성관리 기법)

  • Kim, Eunhwa;Jeong, Jongpil
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.6
    • /
    • pp.265-278
    • /
    • 2013
  • With the recent advancements in various wireless communication technologies, the importance of mobile multicasting is coming to the fore, in an effort to use network resources more efficiently. In the past, when various mobile IP-based multicast techniques were proposed, the focus was put on the costs needed for network delivery for providing multicast services, as well as on minimizing the multicast handover delay. For techniques using MIPv6 (Mobile IPv6), a host-based mobility management protocol, however, it is fundamentally difficult to resolve the problems of handover delay and tunnel convergence. To resolve these problems, a network-based mobility management protocol called PMIPv6 (Proxy Mobile IPv6) was standardized. Although performance is improved in PMIPv6 over MIPv6, it still suffers from the problems of handover delay and tunnel convergence. In this paper, to overcome these limitations, a technique called LFH (Low-cost and Fast Handoff) is proposed for fast and low-cost mobility management with multicasting support in PMIPv6 networks. To reduce the interactions between the complex multicast routing protocol and the multicast messages, a simplified proxy method called MLD (Multicast Listener Discovery) is implemented and modified. Furthermore, a TCR (Tunnel Combination and Reconstruction) algorithm was used in the multicast handover procedure within the LMA (Local Mobility Anchor) domain, as well as in the multicast handover procedure between domains, in order to overcome the problem of tunnel convergence. As a result, it was found that LFH has reduced multicast delay compared to other types of multicast techniques, and that it requires lower costs as well.

Fast-Handover Mechanism for Heterogeneous Network Using MIH in PMIPv6 (PMIPv6에서 MIH 기반의 이기종 네트워크의 연동을 위한 빠른 핸드오버 기법 연구)

  • Kim, Cheol-Joong;Yi, Myung-Kyu;Park, Seok-Cheon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.831-840
    • /
    • 2010
  • While Wireless Internet services were activated, many users got possible to use various Internet services without limitation in location. In particular, the demands to Wireless Internet Services are getting expanded because mobile devices that support high mobility are getting smarter. However, if a user uses various wireless networks, much limitation occurs in network setting when they move to another network. This is because there are few appropriate Handover Mechanisms to support Heterogeneous Network. So, this paper propose that Fast-Handover for Vertical Network Handover with MIH in PMIPv6 to support heterogeneous network and to reduce the handover latency time. Analysis result presented in this paper shows that by carefully selecting suitable system configuration model and parameters, suggestion has reduced latency time of 26% and packet losses of 90% (Avg.) at the maximum in comparison with original PMIPv6 handover.