• 제목/요약/키워드: PM2.5

검색결과 17,591건 처리시간 0.051초

익산지역에서 봄철 비황사기간 중 입경별 대기먼지농도와 이온조성 (Mass Concentration and Ion Composition of Size-segregated Particulate Matter during the Non-Asian Dust Storm of Spring 2007 in Iksan)

  • 강공언;김남송;이현주
    • 한국환경보건학회지
    • /
    • 제34권4호
    • /
    • pp.300-310
    • /
    • 2008
  • In order to further determine the mass concentration and ion composition of size-segregated particulate matter (PM) during the non-Asian dust storm of spring, $PM_{2.5}$ (fine particle), $PM_{10-2.5}$ (coarse particle), and $PM_{over-10}$ (PM with an aerodynamic diameter larger than $10{\mu}m$) were collected using a MCI (multi-nozzle cascade impactor) sampler of a three-stage filter pack in the spring season of 2007 in the Iksan area. During the sampling period from 5 April to 21 April, a total of 34 samples for size-segregated PM were collected, and then measured for PM mass concentrations by gravimetric measurements and for water-soluble inorganic ion species by using ion chromatography. Average mass concentrations of $PM_{2.5}$, $PM_{10-2.5}$, $PM_{over-10}$ were $35.4{\pm}11.5{\mu}g/m^3$, $13.3{\pm}5.5{\mu}g/m^3$ and $9.5{\pm}4.7{\mu}g/m^3$, respectively. On average, $PM_{2.5}$ accounted for 74% of $PM_{10}$. Compared with the literature from other areas in Korea, the measured concentration of $PM_{2.5}$ were relatively high. Water-soluble inorganic ion fractions in $PM_{2.5}$, $PM_{10-2.5}$, and $PM_{over-10}$ were found to be 47.8%, 28.5%, and 14.7%, respectively. Among the water-soluble inorganic ion species, $SO_4^{2-}$, $NO_3^-$ and $NH_4^+$ were the main components in $PM_{2.5}$, while $NO_3^-$ dominantly existed in both $PM_{10-2.5}$ and $PM_{over-10}$. Non-seasalt $SO_4^{2-}$ (nss-$SO_4^{2-}$ and $NO_3^-$ were found to mainly exist as the neutralized chemical components of $(NH_4)_2SO_4$ and $NH_4NO_3$ in fine particles.

애반딧불이(딱정벌레목: 반딧불이과)의 생육 특성 (Bionomical Characteristics of Luciola lateralis (Coleoptera: Lampyridae) in Mass Breeding)

  • 김하곤;권용정;서상재
    • 생명과학회지
    • /
    • 제18권12호
    • /
    • pp.1728-1732
    • /
    • 2008
  • 우리나라에서 서식하는 애반딧불이의 생육 특성을 조사한 결과, $23^{\circ}C$, R.H. 80%에서 사육에서 성충 수명은 암컷이 $17.5{\pm}0.7$일, 수컷이 $20.6{\pm}1.0$일으로 수컷이 다소 높았으나, 사육밀도별 유의차는 없었다. 성충 출현 후 최초 산란일은 1쌍 $2.8{\pm}1.5$일, 2쌍 $2.5{\pm}1.5$일, 3쌍 $1.7{\pm}0.7$일, 4쌍 $1.3{\pm}0.5$일로 사육 밀도가 증가함에 따라 산란전기가 짧아졌다. 산란수는 평균 $248.9{\pm}80.7$개를 산란하며, 사육밀도와는 유의성이 없었다. 일별 산란은 산란 시작 1일째가 20.8%, 2일째 17.3%, 3일째 14.3%, 4일째 12.7%, 5일째 7.0%의 순으로 산란 시작 1일째가 가장 높고 시간이 경과함에 따라 점차 낮아졌다. 난기간은 $21.8{\pm}0.7$일이고, 부화율은 $95.5{\pm}4.8%$이었다. 유충 령기 구분은 탈피각과 유충반문으로 조사한 바 9령으로 확인되었고 1령 $1.0{\pm}0.1$일, 2령 $3.3{\pm}0.2$일, 3령 $10.2{\pm}1.0$일, 4령 $6.8{\pm}0.5$일, 5령 $6.9{\pm}2.0$일, 6령 $15.4{\pm}4.1$일, 7령 $18.3{\pm}5.9$일, 8령 $25.8{\pm}8.7$일, 9령 $31.2{\pm}13.2$일이었다. 성숙한 9령 유충은 $2.8{\pm}0.8$일 동안 용실을 만들고, 전용기간과 용기간은 $4.6{\pm}0.9$일과 $5.6{\pm}0.7$일이었으며, 성충이 된 후 약 $3.8{\pm}0.4$일 동안 뒷날개를 굳힌 후 용실을 뚫고 탈출하였다

국내 지역별 미세먼지 농도 리스크 분석 (Regional Analysis of Particulate Matter Concentration Risk in South Korea)

  • 오장욱;임태진
    • 한국안전학회지
    • /
    • 제32권5호
    • /
    • pp.157-167
    • /
    • 2017
  • Millions of People die every year from diseases caused by exposure to outdoor air pollution. Especially, one of the most severe types of air pollution is fine particulate matter (PM10, PM2.5). South Korea also has been suffered from severe PM. This paper analyzes regional risks induced by PM10 and PM2.5 that have affected domestic area of Korea during 2014~2016.3Q. We investigated daily maxima of PM10 and PM2.5 data observed on 284 stations in South Korea, and found extremely high outlier. We employed extreme value distributions to fit the PM10 and PM2.5 data, but a single distribution did not fit the data well. For theses reasons, we implemented extreme mixture models such as the generalized Pareto distribution(GPD) with the normal, the gamma, the Weibull and the log-normal, respectively. Next, we divided the whole area into 16 regions and analyzed characteristics of PM risks by developing the FN-curves. Finally, we estimated 1-month, 1-quater, half year, 1-year and 3-years period return levels, respectively. The severity rankings of PM10 and PM2.5 concentration turned out to be different from region to region. The capital area revealed the worst PM risk in all seasons. The reason for high PM risk even in the yellow dust free season (Jun. ~ Sep.) can be inferred from the concentration of factories in this area. Gwangju showed the highest return level of PM2.5, even if the return level of PM10 was relatively low. This phenomenon implies that we should investigate chemical mechanisms for making PM2.5 in the vicinity of Gwangju area. On the other hand, Gyeongbuk and Ulsan exposed relatively high PM10 risk and low PM2.5 risk. This indicates that the management policy of PM risk in the west side should be different from that in the east side. The results of this research may provide insights for managing regional risks induced by PM10 and PM2.5 in South Korea.

Study on the Effect of Cysteine and Myo-inositol on In Vitro Maturation of Porcine Oocytes

  • Lee, B.K.;Kim, S.K.
    • 한국수정란이식학회지
    • /
    • 제22권4호
    • /
    • pp.223-227
    • /
    • 2007
  • This study was carried out to investigate the effect of morphology of oocytes, kinds of media, cysteine and myo-inositol supplementation on IVM rate of porcine oocytes. Cumulus- enclosed oocytes were incubated in maturation NCSU-23 and TCM-199 medium with supplementation with 3, 5, 10, 20 mM myo-inositol and 0.05, 0.1, 0.5, 1.0 mM cysteine. 1. When classified by morphology, excellent, good and fair of cumulus-enclosed oocytes were incubated for 48 hrs and the IVM rate were $14.2{\pm}3.7%{\sim}58.7{\pm}4.0%$, respectively. The rate were greater in oocytes with excellent cumulus cells than those without cumulus cells. 2. The IVM rate of oocytes cultured in TCM-199 and NCSU- 23 medium supplementation or non-supplementation with 1.0 mM myo-inositol were $7.5{\pm}4.5%,\;45.0{\pm}4.8%\;and\;4.4%,\;42.5{\pm}4.2%,\;18.0{\pm}5.2%$, respectively. Supplementation with myo-inositol significantly increased the IVM rate of oocytes. 3. The IVM rate of oocytes cultured in NCSU-23 medium supplementation of 3, 5, 10, 20 mM myo-inositol for 48 hrs were $47.5{\pm}4.5%,\;57.5{\pm}4.2%,\;62.5{\pm}4.9%,\;50.0{\pm}5.2%$, respectively. The IVM rate of oocytes in NCSU-23 medium supplemented with 10 mM myo-inositol were significantly increased compared to control ($42.5{\pm}4.0%$). 4. The IVM rate of oocytes cultured for 48 hrs in NCSU-23 media supplement with 0.3, 0.5, 1.0, 2.0 mM myo-inositol were $50.0{\pm}4.5%,\;62.5{\pm}4.2%,\;52.5{\pm}4.9%,\;45.0{\pm}4.2%$, respectively. The IVM rate of oocytes in NCSU-23 medium supplemented with 10 mM cysteine were significantly increased compared to control ($42.5{\pm}4.0%$).

Urban Particulate Matter-Induced Oxidative Damage Upon DNA, Protein, and Human Lung Epithelial Cell (A549): PM2.5 is More Damaging to the Biomolecules than PM10 Because of More Mobilized Transition Metals

  • Song, H-S;Chang, W-C;Bang, W-G;Kim, Y-S;Chung, N
    • 한국환경독성학회:학술대회논문집
    • /
    • 한국환경독성학회 2002년도 추계국제학술대회
    • /
    • pp.169-169
    • /
    • 2002
  • The mobilizable amount of transition metals is a fraction of the total amount of the metal from urban particulate matter. Although the fraction is small, some metals (Fe, Cu) are the major participants in a reaction that generates reactive oxygen species (ROS), which can damage various biomolecules. Damaging effects of the metals can be measured by the single strand breakage (SSB) of X174 RFI DNA or the carbonyl formation of protein. In another study, we have shown that more metals are mobilized by PM2.5 than by PM10 in general. DNA SSB of >20% for PM2.5 and >15% for PM10 was observed in the presence of chelator (EDTA or citrate)/reductant (ascorbate), compared to the control (<3%) only with the chelator. The carbonyl formation by both PMs was very similar in the presence of the chelator, regardless of the kind of proteins. Compared to the control in the absence of chelator/reductant, 3.3 times and 4.9 times more carbonyl formation for PM2.5 and PM10, respectively, was obtained with BSA in the presence of chelator/reductant, showing that PM10 induced 33% more damage than PM2.5. However, 4.8 times and 1.9 times more carbonyl formation for PM2.5 and PM10, respectively, was observed with lysozyme in the presence of chelator/reductant, showing that PM2.5 induced 250% more damage than PM10. Although different proteins showed different sensitivities toward ROS, all these results indicate that the degrees of the oxidation of or damage to the biomolecules by the mobilized metals were higher with PM2.5 than with PM10. Therefore, it is expected that more metals mobilized from PM2.5 than from PM10, more damage to the biomolecules by PM2.5 than by PM10. We suggest that when the toxicity of the dust particle is considered, the particle size as well as the mobilizable fraction of the metal should be considered in place of the total amounts.

  • PDF

다단 임팩터 Nanosampler를 이용한 진주시 대기에어로졸입자의 입경별 질량농도 특성 (Mass Size Distribution of Atmospheric Aerosol Particles with Nanosampler Cascade Impactor in Jinju City)

  • 박정호;장민재;김형갑
    • 한국환경과학회지
    • /
    • 제24권5호
    • /
    • pp.679-687
    • /
    • 2015
  • Atmospheric aerosol particles were investigated at GNTECH university in Jinju city. Samples were collected using the Nanosampler period from January to December 2014. The Nanosampler is a 6 stage cascade impactor(1 stage : > $10{\mu}m$, 2 stage : $2.5{\sim}10{\mu}m$, 3 stage : $1.0{\sim}2.5{\mu}m$, 4 stage : $0.5{\sim}10{\mu}m$, 5 stage : $0.1{\sim}0.5{\mu}m$, back-up : < $0.1{\mu}m$) with the stages having 50% cut-off ranging from 0.1 to $10{\mu}m$ in aerodynamic diameter. The mass size distribution of Atmospheric aerosol particles was unimodal with peak at $1.0{\sim}2.5{\mu}m$ or $0.5{\sim}1.0{\mu}m$. The annual average concentrations of TSP, $PM_{10}$, $PM_{2.5}$, $PM_1$, $PM_{0.5}$ and $PM_{0.1}$ were $44.0{\mu}g/m^3$, $40.3{\mu}g/m^3$, $31.4{\mu}g/m^3$, $18.0{\mu}g/m^3$, $8.0{\mu}g/m^3$, $3.0{\mu}g/m^3$, respectively. On average $PM_{10}$, $PM_{2.5}$, $PM_1$, $PM_{0.5}$ and $PM_{0.1}$ make up 0.91, 0.70, 0.41, 0.19 and 0.07 of TSP, respectively. The annual average of $PM_{2.5}/PM_{10}$ ratio was 0.77.

서울시 미세먼지(PM10)와 초미세먼지(PM2.5)의 단기노출로 인한 사망영향 (Effects of Short-term Exposure to PM10 and PM2.5 on Mortality in Seoul)

  • 배현주
    • 한국환경보건학회지
    • /
    • 제40권5호
    • /
    • pp.346-354
    • /
    • 2014
  • Objectives: Although a number of epidemiologic studies have examined the association between air pollution and mortality, data limitations have resulted in fewer studies of particulate matter with an aerodynamic diameter of ${\leq}2.5{\mu}m$ ($PM_{2.5}$). We conducted a time-series study of the acute effects of particulate matter with an aerodynamic diameter of ${\leq}10{\mu}m$($PM_{10}$) and $PM_{2.5}$ on the increased risk of death for all causes and cardiovascular mortality in Seoul, Korea from 2006 to 2010. Methods: We applied the generalized additive model (GAM) with penalized splines, adjusting for time, day of week, holiday, temperature, and relative humidity in order to investigate the association between risk of mortality and particulate matter. Results: We found that $PM_{10}$ and $PM_{2.5}$ were associated with an increased risk of mortality for all causes and of cardiovascular mortality in Seoul. A $10{\mu}g/m^3$ increase in the concentration of $PM_{10}$ corresponded to 0.44% (95% Confidence Interval [CI]: 0.25-0.63%), and 0.95% (95% CI: 0.16-1.73%) increase of all causes and of cardiovascular mortality. A $10{\mu}g/m^3$ increase in the concentration of $PM_{2.5}$ corresponded to 0.76% (95% CI: 0.40-1.12%), and 1.63% (95% CI: 0.89-2.37%) increase of all causes and cardiovascular mortality. Conclusion: We conclude that $PM_{10}$ and $PM_{2.5}$ have an adverse effect on population health and that this strengthens the rationale for further limiting levels of $PM_{10}$ and $PM_{2.5}$ in Seoul.

진주시 대기중 PM10 및 PM2.5의 질량농도 특성 (Characterization of PM10 and PM2.5 Mass Concentrations in Jinju)

  • 박정호;박기형;서정민
    • 한국환경과학회지
    • /
    • 제23권12호
    • /
    • pp.1963-1970
    • /
    • 2014
  • Ambient particulate matters($PM_{10}$ and $PM_{2.5}$) were investigated at GNTECH university in Jinju city. Samples were collected using a dichotomous sampler(series 240, Andersen Corp.) and a TEOM(Tapered Element Oscillating Microbalance) monitor period from November 2012 to October 2013. For the dichotomous sampler measurements, daily 24-h integrated $PM_{2.5}$ and $PM_{10-2.5}$ ambient air samples were collected at a total flow rate of 16.7 L /min. For the TEOM monitor measurements, daily 1-h integrated $PM_{10}$ ambient air samples were collected at a flow rate of 16.7 L /min. The annual average concentrations of $PM_{10-2.5}$ and $PM_{2.5}$ by a dichotomous sampler were $10.0{\pm}6.1{\mu}g/m^3$ and $22.6{\pm}9.3{\mu}g/m^3$, respectively. And $PM_{10}$ concentration by dichotomous sampler were similar to TEOM monitor by $32.7{\pm}12.9{\mu}g/m^3$ and $31.7{\pm}11.3{\mu}g/m^3$, respectively. And good correlation ($R^2=0.964$) between the two methods was observed. The annual average of $PM_{2.5}/PM_{10}$ ratio was $0.70{\pm}0.12$.

Size Distributions of Atmospheric Particles in Cheonan, Korea

  • Oh, Se-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제22권E1호
    • /
    • pp.45-48
    • /
    • 2006
  • Mass size distributions of atmospheric particles in Cheonan were determined using a high volume air sampler equipped with a 5-stage cascade impactor. Bimodal distributions that are typical for urban atmospheric particles were obtained. A MMD of the fine particle mode was $0.47{\pm}0.05{\mu}m$ with a GSD of $2.72{\pm}0.21$, and those of the coarse particles were $5.15{\pm}0.18{\mu}m\;and\;2.09{\pm}0.09$, respectively. The annual average concentrations of TSP, PM10, PM2.5, and PM1 were 74.1, 67.5, 54.2, and $42.3{\mu}g/m^3$, respectively. Although the daily PM10 concentrations were under the current National Standard, the daily PM2.5 concentrations frequently exceeded the US Standard even in non asian dust periods. The fractions of PM 10, PM2.5, and PM1 in TSP were $0.905{\pm}0.013,\;0.723{\pm}0.022,\;and\;0.572{\pm}0.029$, respectively, and fine mode particles occupied $57{\sim}72%$ of the total particle mass. The results indicate that fine particles were at the concerning level, and should be the target pollutant for the regional air quality strategy in Cheonan.

High Time-resolution Characterization of PM2.5 Sulfate Measured in a Japanese Urban Site

  • Ma, Chang-Jin;Kang, Gong-Unn;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • 제9권4호
    • /
    • pp.280-287
    • /
    • 2015
  • The high time-resolution monitoring data are essential to estimate rapid changes in chemical compositions, concentrations, formation mechanisms, and likely sources of atmospheric particulate matter (PM). In this study, $PM_{2.5}$ sulfate, $PM_{2.5}$, $PM_{10}$, and the number concentration of size-resolved PMs were monitored in Fukuoka, Japan by good time-resolved methods during the springtime. The highest monthly average $PM_{2.5}$ sulfate was found in May ($8.85{\mu}g\;m^{-3}$), followed by April ($8.36{\mu}g\;m^{-3}$), March ($8.13{\mu}g\;m^{-3}$), and June ($7.22{\mu}g\;m^{-3}$). The cases exceed the Japanese central government's safety standard for $PM_{2.5}$ ($35{\mu}g\;m^{-3}$) reached 10.11% during four months campaign. The fraction of $PM_{2.5}$ sulfate to $PM_{2.5}$ varied from 12.05% to 68.11% with average value of 35.49% throughout the entire period of monitoring. This high proportion of sulfate in $PM_{2.5}$ is an obvious characteristic of the ambient $PM_{2.5}$ in Fukuoka during the springtime. However, the average fraction of $PM_{2.5}$ sulfate to $PM_{2.5}$ in three rain events occurred during our intensive campaign fell right down to 15.53%. Unusually high $PM_{2.5}$ sulfate (> $30{\mu}g\;m^{-3}$) marked on three days were probably affected by the air parcels coming from the Chinese continent, the natural sulfur in the remote marine atmosphere, and a large number of ships sailing on the nearby sea. The theoretical number concentration of $(NH_4)_2SO_4$ in $PM_{0.5-0.3}$ was originally calculated and then compared to $PM_{2.5}$ sulfate. A close resemblance between the diurnal variations of the theoretically calculated number concentration of $(NH_4)_2SO_4$ in $PM_{0.5-0.3}$ and $PM_{2.5}$ sulfate concentration indicates that the secondary formed $(NH_4)_2SO_4$ was the primary form of sulfate in $PM_{2.5}$ during our monitoring period.