• Title/Summary/Keyword: PM10 forecast

Search Result 55, Processing Time 0.023 seconds

Improving Usage of the Korea Meteorological Administration's Digital Forecasts in Agriculture: I. Correction for Local Temperature under the Inversion Condition (기상청 동네예보의 영농활용도 증진을 위한 방안: I. 기온역전조건의 국지기온 보정)

  • Kim, Soo-Ock;Kim, Dae-Jun;Kim, Jin-Hee;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.2
    • /
    • pp.76-84
    • /
    • 2013
  • An adequate downscaling of the official forecasts of Korea Meteorological Administration (KMA) is a prerequisite to improving the value and utility of agrometeorological information in rural areas, where complex terrain and small farms constitute major features of the landscape. In this study, we suggest a simple correction scheme for scaling down the KMA temperature forecasts from mesoscale (5 km by 5 km) to the local scale (30 m by 30 m) across a rural catchment, especially under temperature inversion conditions. The study area is a rural catchment of $50km^2$ area with complex terrain and located on a southern slope of Mountain Jiri National Park. Temperature forecasts for 0600 LST on 62 days with temperature inversion were selected from the fall 2011-spring 2012 KMA data archive. A geospatial correction scheme which can simulate both cold air drainage and the so-called 'thermal belt' was used to derive the site-specific temperature deviation across the study area at a 30 m by 30 m resolution from the original 5 km by 5 km forecast grids. The observed temperature data at 12 validation sites within the study area showed a substantial reduction in forecast error: from ${\pm}2^{\circ}C$ to ${\pm}1^{\circ}C$ in the mean error range and from $1.9^{\circ}C$ to $1.6^{\circ}C$ in the root mean square error. Improvement was most remarkable at low lying locations showing frequent cold pooling events. Temperature prediction error was less than $2^{\circ}C$ for more than 80% of the observed inversion cases and less than $1^{\circ}C$ for half of the cases. Temperature forecasts corrected by this scheme may accelerate implementation of the freeze and frost early warning service for major fruits growing regions in Korea.

Prediction of Daily Maximum SO2 Concentrations Using Artificial Neural Networks in the Urban-industrial Area of Ulsan (인공신경망 모형을 이용한 울산공단지역 일 최고 SO2 농도 예측)

  • Lee, So-Young;Kim, Yoo-Keun;Oh, In-Bo;Kim, Jung-Kyu
    • Journal of Environmental Science International
    • /
    • v.18 no.2
    • /
    • pp.129-139
    • /
    • 2009
  • Development of an artificial neural network model was presented to predict the daily maximum $SO_2$ concentration in the urban-industrial area of Ulsan. The network model was trained during April through September for 2000-2005 using $SO_2$ potential parameters estimated from meteorological and air quality data which are closely related to daily maximum $SO_2$ concentrations. Meteorological data were obtained from regional modeling results, upper air soundings and surface field measurements and were then used to create the $SO_2$ potential parameters such as synoptic conditions, mixing heights, atmospheric stabilities, and surface conditions. In particular, two-stage clustering techniques were used to identify potential index representing major synoptic conditions associated with high $SO_2$ concentration. Two neural network models were developed and tested in different conditions for prediction: the first model was set up to predict daily maximum $SO_2$ at 5 PM on the previous day, and the second was 10 AM for a given forecast day using an additional potential factors related with urban emissions in the early morning. The results showed that the developed models can predict the daily maximum $SO_2$ concentrations with good simulation accuracy of 87% and 96% for the first and second model. respectively, but the limitation of predictive capability was found at a higher or lower concentrations. The increased accuracy for the second model demonstrates that improvements can be made by utilizing more recent air quality data for initialization of the model.

Aerosol Emission from Road by Livestock Transport Vehicle Movement (축산관련차량 이동에 따른 도로의 에어로졸 발생량 분석)

  • Seo, Il-Hwan;Lee, In-Bok;Hwang, Hyun-Seob;Bae, Yeon-Jeong;Bae, Seung-Jong;Moon, Oun-Kyung
    • Journal of Korean Society of Rural Planning
    • /
    • v.19 no.4
    • /
    • pp.137-147
    • /
    • 2013
  • Most of livestock houses are concentrated in certain area with mass rearing system resulting in rapid spread of infectious diseases such as HPAI (highly pathogenic avian influenza). The livestock-related vehicles which frequently travel between farms could be a major factor for disease spread by means of transmission of airborne aerosol including pathogens. This study was focused on the quantitative measurement of aerosol concentration by field experiment while vehicles were passing through the road. The TSP (total suspended particle) and PM10 (particle matter) were measured using air sampler with teflon filter installed downward the road with consideration of weather forecast and the direction of road. And aerosol spectrometer and video recorders were also used to measure the real-time distribution of aerosol concentration by its size. The results showed that PM2.5 was not considerable for transmission of airborne aerosol from the livestock-related vehicle. The mass generated from the road during the vehicle movement was measured and calculated to 241.4 ${\mu}g/m^3$ by means of the difference between TSP and PM2.5. The dispersion distance was predicted by 79.6 m from the trend curve.

Aerosol Size Distributions and Optical Properties during Severe Asian Dust Episodes Measured over South Korea in Spring of 2009-2010 (2009-2010년 봄철 심한 황사 사례에 대한 에어러솔 크기 분포와 광학적 특성)

  • Kang, Dong-Hun;Kim, Jiyoung;Kim, Kyung-Eak;Lim, Byung-Sook
    • Atmosphere
    • /
    • v.22 no.3
    • /
    • pp.367-379
    • /
    • 2012
  • Measurements of $PM_{10}$ mass concentration, aerosol light scattering and absorption coefficients as well as aerosol size distribution were made to characterize the aerosol physical and optical properties at the two Korean WMO/GAW regional stations, Anmyeondo and Gosan. Episodic cases of the severe Asian dust events occurred in spring of 2009-2010 were studied. Results in this study show that the aerosol size distributions and optical properties at both stations are closely associated with the dust source regions and the transport routes. According to the comparison of the $PM_{10}$ mass concentration at both stations, the aerosol concentrations at Anmyeondo are not always higher than those at Gosan although the distance from the dust source region to Anmyeondo is closer than that of Gosan. The result shows that the aerosol concentrations depend on the transport routes of the dust-containing airmass. The range of mass scattering efficiencies at Anmyeon and Gosan was 0.50~1.45 and $0.62{\sim}1.51m^2g^{-1}$, respectively. The mass scattering efficiencies are comparable to those of the previous studies by Clarke et al. (2004) and Lee (2009). It is noted that anthropogenic fine particles scatter more effectively the sunlight than coarse dust particles. Finally, we found that the aerosol size distribution and optical properties at Anmyeondo and Gosan show somewhat different properties although the samples for the same dust_episodic events are compared.

An Analysis of the Prediction Accuracy of HVAC Fan Energy Consumption According to Artificial Neural Network Variables (인공신경망 변수에 따른 HVAC 에너지 소비량 예측 정확도 평가 - 송풍기를 중심으로-)

  • Kim, Jee-Heon;Seong, Nam-Chul;Choi, Won-Chang;Choi, Ki-Bong
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.11
    • /
    • pp.73-79
    • /
    • 2018
  • In this study, for the prediction of energy consumption in the ventilator, one of the components of the air conditioning system, the predicted results were analyzed and accurate by the change in the number of neurons and inputs. The input variables of the prediction model for the energy volume of the fan were the supply air flow rate, the exhaust air flow rate, and the output value was the energy consumption of the fan. A predictive model has been developed to study with the Levenbarg-Marquardt algorithm through 8760 sets of one-minute resolution. Comparison of actual energy use and forecast results showed a margin of error of less than 1% in all cases and utilization time of less than 3% with very high predictability. MBE was distributed with a learning period of 1.7% to 2.95% and a service period of 2.26% to 4.48% respectively, and the distribution rate of ${\pm}10%$ indicated by ASHRAE Guidelines 14 was high.8.

A Study on Particulate Matter Forecasting Improvement by using Asian Dust Emissions in East Asia (황사배출량을 적용한 동아시아 미세먼지 예보 개선 연구)

  • Choi, Daeryun;Yun, Huiyoung;Chang, Limseok;Lee, Jaebum;Lee, Younghee;Myoung, Jisu;Kim, Taehee;Koo, Younseo
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.531-546
    • /
    • 2018
  • Air quality forecasting system with Asian dust emissions was developed in East Asia, and $PM_{10}$ forecasting performance of chemical transport model with Asian dust emissions was validated and evaluated. The chemical transport model (CTM) with Asian dust emission was found to supplement $PM_{10}$ concentrations that had been under-estimated in China regions and improved statistics for performance of CTM, although the model were overestimated during some periods in China. In Korea, the prediction model adequately simulated inflow of Asian dust events on February 22~24 and March 16~17, but the model is found to be overestimated during no Asian dust event periods on April. However, the model supplemented $PM_{10}$ concentrations, which was underestimated in most regions in Korea and the statistics for performance of the models were improved. The $PM_{10}$ forecasting performance of air quality forecasting model with Asian dust emissions tends to improve POD (Probability of Detection) compared to basic model without Asian dust emissions, but A (Accuracy) has shown similar or decreased, and FAR (False Alarms) have increased during 2017.Therefore, the developed air quality forecasting model with Asian dust emission was not proposed as a representative $PM_{10}$ forecast model in South Korea.

Study of Tunnel Face Mapping Using Tunnel Mapper (Tunnel Mapper를 이용한 Tunnel 막장면 조사에 관한 연구)

  • Kwak, No-Kyung;Cho, Sung-Jin;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.200-211
    • /
    • 2010
  • Tunnel Mapper, which is tunnel face survey system was used to conduct Face Mapping on the face of the tunnel that is under construction. Then, accuracy and utility value on the forecast of discontinuity were verified to verify the field application in order to present the measures for the use of the system for conducting research on the discontinuity. As result of the directivity verification following discontinuity‘s project, forecasted measurement and actually researched measurement error for the Dip direction and Dip angle was less than ${\pm}10$. Accuracy was 82.6% for Dip direction and 90.7% for Dip angle, which are high. Accordingly, face research discontinuity forecasting system's reliability level towards directivity is high. Tunnel Mapper, a tunnel face survey system can be leveraged to replace face's visual survey and to obtain objective information, enabling execution of the survey system that can automate face survey going beyond time and space related limitations.

  • PDF

Indoor Exposure and Health Risk of Polycyclic Aromatic Hydrocarbons (PAHs) via Public Facilities PM2.5, Korea (II)

  • Kim, Ho-Hyun;Lee, Geon-Woo;Yang, Ji-Yeon;Jeon, Jun-Min;Lee, Woo-Seok;Lim, Jung-Yun;Lee, Han-Seul;Gwak, Yoon-Kyung;Shin, Dong-Chun;Lim, Young-Wook
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.1
    • /
    • pp.35-47
    • /
    • 2014
  • The purpose of the study is to evaluate the pollution level (gaseous and particle phase) in the public facilities for the PAHs, non-regulated materials, forecast the risk level by the health risk assessment (HRA) and propose the guideline level. PAH assessments through sampling of particulate matter of diameter < 2.5 ${\mu}m$ ($PM_{2.5}$). The user and worker exposure scenario for the PAHs consists of 24-hour exposure scenario (WIES) assuming the worst case and the normal exposure scenario (MIES) based on the survey. This study investigated 20 PAH substances selected out of 32 substances known to be carcinogenic or potentially carcinogenic. The risk assessment applies major toxic equivalency factor (TEF) proposed from existing studies and estaimates individual Excess Cancer Risk (ECR). The study assesses the fine dusts ($PM_{2.5}$) and the exposure levels of the gaseous and particle PAH materials for 6 spots in each 8 facility, e.g. underground subway stations, child-care facilities, elderly care facilities, super market, indoor parking lot, terminal waiting room, internet caf$\acute{e}$ (PC-rooms), movie theater. For internet caf$\acute{e}$ (PC-rooms) in particular, that marks the highest $PM_{2.5}$ concentration and the average concentration of 10 spots (2 spots for each cafe) is 73.3 ${\mu}g/m^3$ (range: 6.8-185.2 ${\mu}g/m^3$). The high level of $PM_{2.5}$ seen in internet cafes was likely due to indoor smoking in most cases. For the gaseous PAHs, the detection frequency for 4-5 rings shows high and the elements with 6 rings shows low frequency. For the particle PAHs, the detection frequency for 2-3 rings shows low and the elements with 6 rings show high frequency. As a result, it is investigated that the most important PAHs are the naphthalene, acenaphthene and phenanthrene from the study of Kim et al. (2013) and this annual study. The health risk assessment demonstrates that each facility shows the level of $10^{-6}-10^{-4}$. Considering standards and local source of pollution levels, it is judged that the management standard of the benzo (a)pyrene, one of the PAHs, shall be managed with the range of 0.5-1.2 $ng/m^3$. Smoking and ventilation were considered as the most important PAHs exposure associated with public facility $PM_{2.5}$. This study only estimated for inhalation health risk of PAHs and focused on the associated cancer risk, while multiple measurements would be necessary for public health and policy.

Characteristics of Brightness Temperature from MTSAT-1R on Lightning Events and Prediction over South Korea (MTSAT-1R 휘도온도를 이용한 낙뢰발생 특성 분석 및 예측)

  • Eom, Hyo-Sik;Suh, Myoung-Seok;Lee, Yun-Jeong
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.227-236
    • /
    • 2009
  • This study investigates the characteristics of cloud top brightness temperature (CTBT) of WV and IR1 from MTSAT-1R when lightning strikes in South Korea. For temporal and spatial collocations, lightnings, occurred only within ${\pm}5$ minutes from the six minutes added official satellite observation time (e.g., not 0600 UTC but 0606 UTC, considering the real scan time over South Korea), were selected. And the CTBTs corresponding to lightning spots were determined using the nearest pixel within 5 km. The brightness temperature difference (BTD, defined as WV - IR1) between two channels is negatively large when no lightning occurrs, whereas it increases up to positive values (sometimes, +5 K) and the largest frequency distributes around 225 K and 205 K in lightning cases. The probablistic approach for lightning frequency forecast, presented by Machado et al. (2008) in Southern America, was applied over South Korea and new exponential equations, with high coefficients of determination around 0.95 to 0.99, were developed using two channels' BTDs when lightning strikes. Moreover, a case study on 10th June, 2006, the largest number of lightning occurred between 2002 and 2006, was made. The major finding is that lightning activity is closely related to the dramatic decreases in BT and the increases in BTD (esp., equal to or larger than 0 K). Lightning frequency increases exponentially when BTD increases up to 0 K. Therefore, lightning forecast skill will be improved when the integrated strategy (synoptic background and satellite-based CTBT and BTD) is applied. It is believed that this study contributes to the application of the Korean first geostationary satellite (COMS), scheduled to launch at the end of this year, to severe weather detections.

  • PDF

QTL Analysis of Concerned on Ideal Plant Form in Rice (벼의 이상적인 초형에 관여하는 QTL 분석)

  • Chung, Il Kyung;Kim, Kyung-Min
    • Korean Journal of Plant Resources
    • /
    • v.30 no.2
    • /
    • pp.213-218
    • /
    • 2017
  • Rice is the staple food of at least half of the world's population. Due to global warming, the weather is difficult to forecast nowadays. Therefore, it is necessary to breed various breeding to respond to such changes in the environment. This study was conducted to analyze the QTL about plant form, culm length, ear number and ear length by using 120 lines by anther culture, a cross between the Indica variety Cheongcheong and Japonica variety Nagdong. DNA marker was selected on the QTLs gene, and the following results were obtained. CNDH (Cheongcheong Nagdong Doubled Haploid) lines frequency distribution table curves about culm length, ear number and ear length exhibited showed a continuous variation close to a normal distribution. QTL analysis result, on culm length qPlL1-1 and qPlL1-2 were detected on the chromosome 1 and qPlL5 was detected on the chromosome 5. However, on ear length qPL2, qPL3 and qPL10, were detected on the chromosome 2, 3 and 10, while on ear number qPN1-1 and qPN1-2 were detected on the chromosome 1, qPN9 was detected on the chromosome 9. The QTLs related to culm length was found to chromosomes 5 and LOD scores were 3.81. The QTLs related to ear length was found to chromosomes 2 and 3 LOD scores were 7.13 and 3.20. The QTLs related to ear number was found to chromosome 9 and LOD scores were 4.27. Twenty two (22) Japonica cultivars and 12 Indica cultivars were analyzed polymorphisms, using selected 9 markers from the result about plant form analysis. RM5311, RM555 and RM8111 about the culm length, the ear length and number of ear were selected on the standard of Cheongcheong and Nagdong. Each rate of concordances about the culm length, the ear length and number of ear are 44.11%, 41.17% and 44.11%.