• Title/Summary/Keyword: PM10 concentration

Search Result 3,322, Processing Time 0.032 seconds

Monitoring of Working Environment Exposed to Particulate Matter in Greenhouse for Cultivating Flower and Fruit (과수 및 화훼 시설하우스 내 작업자의 미세먼지 노출현황 모니터링)

  • Seo, Hyo-Jae;Kim, Hyo-Cher;Seo, Il-Hwan
    • Journal of Bio-Environment Control
    • /
    • v.31 no.2
    • /
    • pp.79-89
    • /
    • 2022
  • With the wide use of greenhouses, the working hours have been increasing inside the greenhouse for workers. In the closed ventilated greenhouse, the internal environment has less affected to external weather during making a suitable temperature for crop growth. Greenhouse workers are exposed to organic dust including soil dust, pollen, pesticide residues, microorganisms during tillage process, soil grading, fertilizing, and harvesting operations. Therefore, the health status and working environment exposed to workers should be considered inside the greenhouse. It is necessary to secure basic data on particulate matter (PM) concentrations in order to set up dust reduction and health safety plans. To understand the PM concentration of working environment in greenhouse, the PM concnentrations were monitored in the cut-rose and Hallabong greenhouses in terms of PM size, working type, and working period. Compare to no-work (move) period, a significant increase in PM concentration was found during tillage operation in Hallabong greenhouse by 4.94 times on TSP (total suspended particle), 2.71 times on PM-10 (particle size of 10 ㎛ or larger), and 1.53 times on PM-2.5, respectively. During pruning operation in cut-rose greenhouse, TSP concentration was 7.4 times higher and PM-10 concentration was 3.2 times higher than during no-work period. As a result of analysis of PM contribution ratio by particle sizes, it was shown that PM-10 constitute the largest percentage. There was a significant difference in the PM concentration between work and no-work periods, and the concentration of PM during work was significant higher (p < 0.001). It was found that workers were generally exposed to a high level of dust concentration from 2.5 ㎛ to 35.15 ㎛ during tillage operation.

Estimation of Particle Mass Concentration from Lidar Measurement (라이다 관측자료를 이용한 미세먼지 농도 산정)

  • Kim, Man-Hae;Yeo, Huidong;Sugimoto, Nobuo;Lim, Han-Cheol;Lee, Chul-Kyu;Heo, Bok-Haeng;Yu, Yung-Suk;Sohn, Byung-Ju;Yoon, Soon-Chang;Kim, Sang-Woo
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.169-177
    • /
    • 2015
  • Vertical distribution of particle mass concentrations was estimated from 8-year elastic-backscatter lidar and sky radiometer data, and from ground-level PM10 concentrations measured in Seoul. Lidar ratio and mass extinction efficiency were determined from aerosol optical depth (AOD) and ground-level PM10 concentrations, which were used as constraints to estimate particle mass concentration. The mean lidar ratio (with standard deviation) and mass extinction efficiency for the entire 8-year study period were $60.44{\pm}23.17$ sr and $3.69{\pm}3.00m^2g^{-1}$, respectively. The lidar ratio did not vary significantly with the ${\AA}ngstr{\ddot{o}}m$ exponent (less than ${\pm}10%$); however, the mass extinction efficiency decreases to $1.82{\pm}1.67m^2g^{-1}$ (51% less than the mean value) when the ${\AA}ngstr{\ddot{o}}m$ exponent is less than 0.5. This result implies that the particle mass concentration from lidar measurements can be underestimated for dust events. Seasonal variation of the particle mass concentration estimated from lidar measurements for the boundary layer, was quite different from ground-level PM10 measurements. This can be attributable to an inhomogeneous vertical distribution of aerosol in the boundary layer.

High Influential Factor of Cadmium and Lead Exposure in Outdoor Workers (옥외 근로자들의 카드뮴과 납 노출 영향요인)

  • Moon, Chan-Seok
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.2
    • /
    • pp.163-173
    • /
    • 2020
  • Objectives: The study was evaluated exposure variation and daily absorption level of cadmium, lead concentration of ambient air of monthly data from 1999 to 2017 for main exposure factor in outdoor workers. Methods: Based on the monthly data from 'The annual report of air quality in Korea from 1999 to 2018' in 'Air Korea' website in the Korean Ministry of Environment. The monthly data of PM2.5, PM10, cadmium, lead concentration of ambient air were recalculated to average, minimum, and maximum. And these data were combined to Asian-dust exposure data from 'The annual report of Asian-dust·smog in 2017' of National Institute of Meteorological Sciences in Korea. Results: Geometric mean(minimum-maximum) concentration in ambient air of monthly data were 0.0017 (ND-0.2015) mg/㎥ in cadmium and 0.0467(ND-0.8554) mg/㎥ in Pb from 1999 to 2017. Both of Cd and Pb concentration in ambient air showed the highest concentration in January and the lowest in August among annual variation from 1999 to 2017. PM10 and PM2.5 level showed the highest in March(PM10) and February (PM2.5) the lowest in August both of PM10 and PM2.5. Discussion: Based on exposure data and prior reports, daily Cd absorption was estimated to 0.013(ND-1.511) mg/day from respiration and 1.89 mg/day from daily food(25.2 mg/day of daily Cd intake). In case of Pb, daily absorption was estimated to 0.350(ND-6.416) mg/day from respiration and 1.38-1.71 mg/day from daily food intake. Conclusion: Cd and Pb with Asian-dust have high influential factor to increase the Cd and Pb exposure at Winter and Spring season in outdoor workers.

Evaluation on Indoor Air Quality by Statistical Analysis of Indoor Air Pollutants Concentration in a Seoul Metropolitan Underground Railway Station (서울시 지하역사 실내오염물질 농도자료의 통계분석을 통한 실내공기질 특성 평가)

  • Yim, Bongbeen;Lee, Kyusung;Kim, Jooin;Hong, Hyunsu;Kim, Jangwon;Jo, Kyung-Ho;Jung, Eulgyu;Kim, Inkyu;An, Yeonsun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.3
    • /
    • pp.233-244
    • /
    • 2014
  • The objective of this study was to explore the characteristics of concentration of indoor air pollutants, such as $PM_{10}$, $CO_2$, and $NO_2$, measured by tele-monitoring system in a Seoul Metropolitan underground railway station from January 1, 2008 to December 31, 2012. The annual average concentration of indoor air pollutants actually varied over a wide range and was found to exhibit marked variation with time and measurement sites (tunnel inlet, platform, and concourse). After installing platform screen doors, the average $PM_{10}$ concentration on platform and concourse was decreased by 43.8% and 31.2%, respectively during the study periods. The relationship between the concentration of $PM_{10}$ and meteorological parameters (relative humidity and rainfall) or the Asian dust events was regarded as statistically significant. The correlations between the number of boarding/alighting passengers and $PM_{10}$, $CO_2$, and $NO_2$ were calculated. A p-value of less than 0.01 was regarded as significant except $NO_2$. The I/O ratio of $PM_{10}$ concentration was elevated after a congested time (about 08:00 am). The average I/O ratios of $NO_2$ were observed in concourse and platform on 03:00 am with $1.76{\pm}0.91$ and $1.50{\pm}0.51$, respectively. The average daily variation of standard excess rate of $PM_{10}$ and $NO_2$ concentration in concourse and platform was investigated. The highest standard excess rate was observed on 21:00 (09:00 pm).

A Study on the PM10 and CO2 Concentrations at Public Places (일부 실내공간에서 PM10과 CO2의 농도 특성에 관한 연구)

  • Jung, Joon-sig;Park, Duckshin;Kim, Jong bum;Song, Hyea-suk;Park, Hyung-kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4335-4347
    • /
    • 2015
  • The objective of this study was to investigate $PM_{10}$ and $CO_2$ concentrations in the classrooms of 286 elementary schools in Suwon, Ansan, and Hwaseong in the province of Gyeonggi between August 2008 and December 2012. By gaining an understanding of the environmental factors that influence these concentrations, this study also aimed to establish a management plan for indoor air quality in schools, which substantially affects the health of elementary students. When the schools were classified by region, no statistically significant difference in $PM_{10}$ concentration was observed. However, $PM_{10}$ concentration was relatively high in industrial areas and low in rural areas. No difference in $CO_2$ concentration was observed among the surveyed cities. Analysis of annual $PM_{10}$ concentration showed that the highest values for Suwon and Hwaseong occurred in 2008 and 2009, respectively (p<0.01). In the case of Ansan, the highest concentration occurred during 2009, but the difference was not significant compared to the other years. Analysis of the annual $CO_2$ concentration of each city shows no significant difference among the cities (p-value=0.366,0.730,0.210). According to a time series analysis of $PM_{10}$ and $CO_2$ by season, from autumn 2008 to winter 2012, $PM_{10}$ concentration was high during 2009, then it gradually decreased until 2012, and started to increase again. While no difference in annual $CO_2$ concentration was observed, the concentration had a tendency to be higher in spring and winter than in summer. By analyzing the relationship between $PM_{10}$ and $CO_2$ and the environmental factors (years of construction, average students of classroom, temperature, and humidity), it showed a significant negative correlation was found between $CO_2$ and the environmental temperature and humidity, at -0.329 and -0.188, respectively (p<0.01).

Weekday/weekend Chemical Characteristics of Water-Soluble Components of PM10 at Busan in Springtime (부산지역 봄철 주중/주말의 PM10 중 이온성분의 화학적 조성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.24 no.6
    • /
    • pp.785-792
    • /
    • 2015
  • This study investigates weekday/weekend characteristics of $PM_{10}$ concentration and chemical composition of water-soluble ions in Busan in the spring of 2013. Contribution rate of water-soluble ions to PM10 concentration in weekday/weekend were 41.5% and 38.5%, respectively. Contribution rate of SO_4{^{2-}}$ to total ion mass in weekday/weekend were 30.4% and 33.8%, respectively. Contribution rate of total inorganic water-soluble ions in PM10 in weekday/weekend were 42.2% and 39.1% (mean 41.4%), respectively. $[NO_3{^-}/SO_4{^{2-}}]$ ratio in weekday/weekend were 1.01 and 0.97(mean 0.99), respectively, which indicated that weekday ratio was higher. Contribution rate of sea salts and $Cl^-/Na^+$ ratio in PM10 in weekday/weekend were 8.1% and 7.6%, 0.37% and 0.41%, respectively. This research will help understand chemical composition of water-soluble ions during the weekday/weekend and will be able to measure the contribution level of artificial anthropogenic source on urban air.

The Analysis of Anaerobic Power in Professional Female Basketball Players (여자 프로농구선수의 무산소성 파워 분석)

  • Chang Chung-Hoon;Nam Hyoung-Chun
    • The Journal of Korean Physical Therapy
    • /
    • v.14 no.2
    • /
    • pp.172-180
    • /
    • 2002
  • The purpose of this paper was to make an analysis of anaerobic power in professional female basketball players using the Wingate Test Method with bicycle ergometer. Twenty-three subjects(age $21.6\pm2.8years$, body height $178.0\pm7.4cm$, body weight $70.3\pm7.4kg$) were selected from professional female basketball team whose careers were over 10years and participated in this investigation. Each subject peformed a Wingate anaerobic power test to determine total work, peak power, mean power, fatigue index and blood lactate concentration. The following were obtained from result data analysis; 1. The Total Work of athletes was a $1128.7\pm120.6watt$ 2. The Peak Power of athletes was a $449.5\pm53.1watt$ 3. The Mean Power of athletes was a $369.1\pm39.4watt$ 4. The Fatigue Index of athletes was a $33.5\pm6.9\%$ 5. The blood lactate concentration was $1.85\pm0.85mM/L$ at the normal state and $3.16\pm1.53mM/L$ at the after Wingate test. The blood lactate concentration was $6.96\pm0.81mM/L$ after 3 minute and $6.95\pm1.05mM/L$ after 5 minutes.

  • PDF

The Study on Concentration of PM10 and Heavy Metal in Public Schools at Chung-Nam Area (충남 지역 일부 학교의 PM10과 중금속 농도에 관한 연구)

  • Son, Bu-Soon;Song, Mi-Ra;Kim, Jung-Duk;Cho, Tae-Jin;Yang, Won-Ho;Chung, Tae-Woong
    • Journal of Environmental Science International
    • /
    • v.17 no.9
    • /
    • pp.1005-1013
    • /
    • 2008
  • In this study, in order to analyze the air quality of the indoor environments of schools, we measured the indoor, outdoor and personal exposure concentration level of $PM_{10}$ for 40 classrooms(20 old, 20 new) in chungnam area from June 22 to July 19 and from November 21 to December 30, 2003. 1. Old classrooms contained more dust than new classrooms; the average of respirable dust is $43.27\;{\mu}g/m^3$ for new classrooms while $53.38\;{\mu}g/m^3$ for old one. The exposure concentration level of respirable dust in new classrooms were in summer higher outdoors than indoors. The values were indoors $46.71\;{\mu}g/m^3$, outdoors $50.46\;{\mu}g/m^3$, and personal $41.62\;{\mu}g/m^3$. Meanwhile in winter indoors had a higher concentration level than outdoors, the values being indoors $39.11\;{\mu}g/m^3$, outdoors $34.86\;{\mu}g/m^3$, and personal $49.01\;{\mu}g/m^3$. 2. Cr concentration level within dust was slightly higher in summer indoors ($101.50{\pm}32.10\;ng/m^3$) and outdoors ($100.89{\pm}35.18\;ng/m^3$) than winter indoors ($85.80{\pm}48.95\;ng/m^3$) and outdoors ($74.43{\pm}38.93\;ng/m^3$), but in personal concentration level, winter was higher. The results of this research show insufficient understanding of health risks from indoor air pollution, and shows possible health problems to students from school indoor air pollution. As such, a logical and systematic education program for students about the importance of indoor air quality should be carried out. Also the results of $PM_{10}$ concentration level measurements emphasize the need for regular measurements of indoor / outdoor and personal concentration level. New classrooms in particular needs to be used after measuring pollutants and safety, and requires installation of a ventilation device in all classrooms to improve air quality.

Effect of living room air purifier on reducing PM2.5 in living room and bedroom (거실의 공기청정기가 거실과 침실의 초미세먼지 농도 저감에 미치는 영향)

  • Ji, Jun-Ho;Joo, Sang-Woo
    • Particle and aerosol research
    • /
    • v.17 no.4
    • /
    • pp.107-114
    • /
    • 2021
  • In this study, the effect of the air purifier located in the living room on the reduction of PM2.5 concentration in the living room and bedroom was investigated. Measurements were carried out in real-life for about 2 weeks in a Korean apartment building where a 3-person household had lived and the exclusive private area was 84.9 m2. When the air purifier in the living room was operating, the change in PM2.5 concentration was measured when the door to the bedroom connected to the living room was opened and closed. In the case of living with the bedroom door open, the average PM2.5 concentrations in the living room and bedroom were almost the same. When living with the bedroom door closed, the average PM2.5 in the living room was higher than in the bedroom. The ventilation and cooking effects in the living room mainly affected the PM2.5 concentration in the living room. Only one air purifier in the living room was able to keep the PM2.5 concentration in the living room and bedroom low.

The PM2.5 Concentration and Components Characteristics in Miryang (밀양지역의 PM2.5 농도 및 성분특성)

  • Suh, Jeong-Min;Kim, Young-Sik;Jeon, Bo-Kyung;Choi, Kum-Chan;Ryu, Jae-Yong;Park, Jeong-Ho
    • Journal of Environmental Science International
    • /
    • v.16 no.12
    • /
    • pp.1355-1367
    • /
    • 2007
  • This study summarizes the relations among $PM_{2.5}$ concentration, water-soluble ions concentration, metallic element Components characteristics and SPSS in negative ion and metallic element of $PM_{2.5}$ particle in Miryang.(By the urban area, the industrial complex area and the suburban area according to the season) $PM_{2.5}$ concentration of total 72 samples collected from 3 sites turned out to range from 3.47 to 34.7 ${\mu}g/m^3$, and the average concentration was the suburban area-the kin nup(16.00 ${\mu}g/m^3$) > the urban area-the roof of the old Miryang university(10.32 ${\mu}g/m^3$) > the industrial complex-Sapo industrial complex(10.29 ${\mu}g/m^3$). In particular, the suburban area had $PM_{2.5}$ concentration 1.5 times those of urban area, industrial complex. It was thought although the site was suburban and farm-side without pollutants around, it had a higher concentration value influenced by external factors including the brickyard, small-scale incinerator, driving range construction, construction on the Daegu-Busan express and the widening of the four-lane road between Miryang-Anyang nearby. As for water-soluble ions among $PM_{2.5}$ particle collected in Miryang area, $SO4_{2^-}$ accounted for 60% and $NO_{3^-}$, was 30% in spring and summer. And $NO_{3^-}$ accounted for 50% and $SO4_{2^-}$ was 35% in fall and winter. The AI value of metallic Components among $PM_{2.5}$ particle collected in Miryang area had a high value influenced by the apartment complex construction and the extension work of road. The industrial complex area had Zn concentration 3 times, and Fe concentration 2 times those of urban area and suburb area. When it comes to the relation with metallic elements in urban area, the highest coefficient of correlation was between Cr-Fe with 0.85, and Pb-Cd turned out in the reverse correlation. Among metallic elements, the coefficients of correlation between Zn and Cr, Mn, Fe, NI were high in industrial complex area. The highest coefficient of correlation was between Mn-Zn with 0.88, meanwhile Ni and Cu, Cd turned out in the reverse correlation in the suburb area. These coefficients of correlation are attributed to the difference in pollutant sources, rather than difference in pollutant and non-pollutant.