• Title/Summary/Keyword: PM10 Air Monitoring

Search Result 303, Processing Time 0.025 seconds

Quantitative Analysis of CO2 Reduction by Door-opening in the Subway Cabin (출입문 개폐에 의한 전동차 객실 CO2 저감효과 분석)

  • Kwon, Soon-Bark;Cho, Young-Min;Park, Duck-Shin;Park, Eun-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.2
    • /
    • pp.153-161
    • /
    • 2008
  • The guidelines for indoor air quality of public transportations such as subway, train and bus was presented by Korean Ministry of Environment last end of year 2006 based on the great consequence of indoor air quality in daily life. Two main parameters, carbon dioxide($CO_2$) and particulate matters smaller than $10\;{\mu}m(PM_{10})$, were selected as index pollutants for the management of indoor air quality. The former pollutant, $CO_2$, is regarded as index of ventilation status and the major source of $CO_2$ in the train or subway is the exhalation of passengers. It is publically perceived that the high $CO_2$ concentration in a crowded subway will be reduced and ventilated with outdoor air by door-opening taken every 2 or 3 minutes when the train stops each station. However, there has not been any scientific proof and quantitative information on the effect of door-opening on the $CO_2$ reduction by ventilation with outdoor air. In this study, $CO_2$ concentration and number of passengers were measured at each station on the 3 lines of Korail metropolitan subway. In order to evaluate the effect of $CO_2$ reduction by door opening, the theoretical approach using the $CO_2$ balance equation was performed. By comparing the predicted data with monitoring one, the optimum $CO_2$ dilution factor was determined. For the first time, it was quantified that about 35% of $CO_2$ concentration in the subway indoor was removed by the door-opening at each station.

Microbial Community in the TPH-Contaminated Aquifer for Hot Air Sparging using Terminal-Restriction Fragment Length Polymorphism (유류오염대수층 고온공기분사공정시 제한효소다형성 미생물 군집)

  • Lee, Junho;Park, Kapsong
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.19-29
    • /
    • 2008
  • Hot air sparging is a groundwater remediation technique, in which organic contaminants volatilized into hot air from the saturated to vadose zone. In the laboratory diesel (10,000 mg TPH/kg) was spiked in contaminated saturated aquifer soil. The hot air ($34.9{\pm}2.7^{\circ}C$) was injected in intermittent (Q=1,500 mL/min, 10 minute injection and 10 minute idle) modes. We performed microcosm tests using the groundwater samples to assess TPH reductive remediation activity. For Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis of eubacterial communities in sludge of wastewater treatment plants and soil of experiment site, the 16S rDNA was amplified by Polymerase Chain Reaction (PCR) from the sludge and the soil. The obtained 16S rDNA fragments were digested with Msp I and separated by electrophoresis gel. We found various sequence types for hot air sparging experiment with sludge soil samples that were closely related to Bacillus (149 bp, Firmicutes), Methlobacterium (149 bp, Euryarchaeotes), Pseudomonas (492 bp, ${\gamma}$-Proteobacteria), etc., in the clone library. In this study we find that TPH-water was reduced to 78.9% of the initial value in this experiment aquifer. The results of the present study suggests that T-RFLP method may be applied as a useful tool for the monitoring in the TPH contaminated soil fate of microorganisms in natural microbial community.

Reduction Effect of Air Cleaner on Particulate Matters and Biological Agents in a Swine Facility (공기정화기 적용에 따른 돈사 작업장내 입자상 물질 및 생물학상 물질 저감 효과에 관한 연구)

  • Kim, Ki Youn
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.1
    • /
    • pp.70-76
    • /
    • 2017
  • Objectives: This on-site study was performed to evaluate the reduction efficiency of an air cleaner on particulate matters and biological agents in a swine facility. Materials and Methods: Particulate matter was measured using a real-time monitoring recorder and biological agents were sampled with a one-stage impactor and then analyzed based on the microbial culture method. An experimental process for the reduction effect on airborne pollutants through air cleaner operation consisted of three conditions: no treatment, wet scrapper by water spray and wet scrapper by disinfectant spray. Results: Geometric mean levels of particulate matter(TSP, $PM_{10}$, $PM_{2.5}$ and $PM_1$) were presented at $1,608{\mu}g/m^3$, $1,373.8{\mu}g/m^3$, $401.8{\mu}g/m^3$ and $144.5{\mu}g/m^3$ for no treatment; $1,503{\mu}g/m^3$, $1,017{\mu}g/m^3$, $159.4{\mu}g/m^3$ and $69.8{\mu}g/m^3$ for wet scrapper by water spray; and $1,222.17{\mu}g/m^3$, $477.17{\mu}g/m^3$, $33.2{\mu}g/m^3$ and $11.1{\mu}g/m^3$ for wet scrapper by disinfectant spray, respectively. In the case of biological agents, the geometric averaged concentrations of total airborne bacteria and fungi were as follows: $45,371cfu/m^3$ and $13,474cfu/m^3$ for no treatment, $43,286cfu/m^3$ and $8,610cfu/m^3$ for wet scrapper by water spray, and $2,440cfu/m^3$ and 1,867 cfu/ for wet scrapper by disinfectant spray, respectively. Regardless of particulate matter and biological agent, the highest concentrations were found for no treatment, while the lowest concentrations were found with wet scrapper by disinfectant spray. Conclusions: Based on the results obtained from this on-site evaluation, there was a significant reduction effect on particulate matter and biological agents through the application of an air cleaner in this study.

Regional Trends in Short-Term High Concentrations of Criteria Pollutants from National Air Monitoring Stations (측정망 자료를 이용한 환경기준 대기오염물질의 권역별 단기 고농도 변화 추이)

  • Ghim, Young Sung;Kim, Chan Hyuk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.5
    • /
    • pp.545-552
    • /
    • 2013
  • While attainment rates for $SO_2$ and CO approached 100%, those for $PM_{10}$, $NO_2$, and $O_3$ have been low during the past decade. The attainment rates for 24-h $PM_{10}$ and 8-h $O_3$ have been only 1~3% and 5~12%, respectively, since the standards were strengthened in 2007. Variations in the 99th percentiles of 24-h $PM_{10}$, 8-h $O_3$, and 24-h $NO_2$, which are used as criteria for determining exceedance of standards, were examined by region. Because the analysis was based on short-term high-concentrations, the effects of Asian dust were observed for $PM_{10}$. Accordingly, it is necessary to specify whether exceptional events such as Asian dust will be included or not in determining the exceedances of standards. While variations in $NO_2$ were not large, there was an increasing trend in $O_3$. In the Yeongnam region, the increasing rate of $O_3$ concentrations was small although the decreasing rate of $NO_2$ was the greatest. In the Gangwon region, $NO_2$ concentrations were almost unchanged, but $O_3$ concentrations experienced a significant increase. Regional management strategies targeting short-term high concentrations of criteria pollutants analogous to the Special Act for the greater Seoul area will aid in improving attainment rates.

Development of an IAQ Index for Indoor Garden Based IoT Applications for Residents' Health Management (실내거주자 건강 관리를 위한 IoT기반 실내정원용 IAQ지수 개발)

  • Lee, Jeong-Hun;An, Sun-Min;Kwak, Min-Jung;Kim, Kwang Jin;Kim, Ho-Hyun
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.5
    • /
    • pp.421-432
    • /
    • 2018
  • Objectives: In this study, we started to develop an indoor garden integrated IoT solution based on IAQ (indoor air quality) and interconnection with an environmental database for smart management of indoor gardens. The purpose of this study was to develop and apply an integrated solution for customized air purification from an indoor garden through big data analysis using IoT technology. Methods: An IoT-based IAQ monitoring system was established in three households within a new apartment building. Based on real-time and long-term data collected, $PM_{2.5}$, $CO_2$, temperature, and humidity changes were compared to those of indoor garden applications and the analyzed results were indexed. Results As a result of the installation, all three households had no results exceeding the standard for indoor air pollution on average $PM_{2.5}$ and $CO_2$ indices. In the case of indoor garden installation, the IAQ index increased to the "Good" section after the installation, and readings in the "Bad" section shown before the installation disappeared. The comfort index also did not dip into the "Uncomfortable" section, where it had been preinstallation, and significantly lowered the average score from "Uncomfortable for sensitive groups" to "Good". Overall, the IAQ composite index for the generation of installations decreased the "Good" interval, but "Bad" did not appear. Conclusions In this study on developing an integrated solution for IAQ based on IoT indoor gardens, big data was analyzed to determine IAQ and comfort indexes and an IAQ composite index. Through this process, it became understood that it is necessary to monitor IAQ based on IoT.

Impact Assessment of Remodeling Works on Indoor Air Quality in a University Library Building (대학 도서관 건물 리모델링에 따른 실내공기질 영향 평가)

  • Baek, Sung-Ok;Park, Dae-Gwon;Park, Sun-Young;Lee, Yeo-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.6
    • /
    • pp.876-887
    • /
    • 2006
  • Recently, there have been a large number of remodeling (or renovation) works in old buildings in urban areas. Compared to new buildings, environmental risk might be more significant in such buildings where remodeling works are going on, since some parts of the building may still be in service for people. This study was carried out to investigate the impacts of remodeling works on the indoor air quality (IAQ) of a large building (a 22 stories university library). Indoor air monitoring was conducted during and after the remodeling works every two weeks for a one year period, and target compounds included BTEX, styrene, TVOC, carbonyl compounds such as formaldehyde and acetaldehyde. $CO,\;CO_2,\;PM_{10}$, and $PM_{2.5}$. Overall, the IAQ appeared to be recovered within two months after the remodeling works. However, in some places, concentrations of formaldehyde, toluene, xylene. and ethylbenzene showed higher levels even after works than those during the works. The results indicate that painting, glues and office furnitures are major sources of aromatic VOCs and formaldehyde. Therefore, in order to decrease the concentrations of toxic VOCs, the use of environmental-friendly building materials is strongly recommended during the remodeling works. In addition, IAQ control and management scheme (for example, baking the inside of the building) should be taken into consideration before reopening the buildings.

Practical Use of Flux Gradient Similarity Theory for Forest Soil NO Flux at Mt. Taewha (Flux-gradient similarity theory 적용에 따른 태화산 산림지표 토양NO플럭스 분석)

  • Kim, Deug-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.6
    • /
    • pp.531-537
    • /
    • 2014
  • Terrestrial vegetation has been known as a main source of biogenic volatile organic compounds (BVOCs). Isoprene and monoterpene among the BVOCs are most abundant species emitted by forests, and have a significant impact on atmospheric chemistry. Abundancy of these species could lead to an increase or decrease in the production of natural tropospheric ozone in forests, depending on the nitric oxide (NO) concentration. Soil is the most significant source of natural NO. Understanding of NO emission from forest soil could be critical in evaluation of air quality in the forest area. Flux-gradient similarity theory (FGST) was applied for practical use to estimate forest soil NO emission at Mt. Taewha where is available micro-meteorological data near surface monitoring from flux tower. NO fluxes calculated by FGST were compared to flux results by flow-through dynamic chamber (FDC) measurement. Surface NO emission trends were shown between two different techniques, however their magnitudes were found to be different. NO emissions measured from FDC technique were relatively higher than those from theoretical results. Daily mean NO emissions resulted from FGST during Aug. 13, 14 and 15 were $0.28{\pm}8.45$, $2.17{\pm}15.55$, and $-3.18{\pm}13.65{\mu}gm^{-2}hr^{-1}$, respectively, while results from FDC were $2.26{\pm}1.44$, $5.11{\pm}3.85$, and $2.23{\pm}6.45{\mu}gm^{-2}hr^{-1}$. Trends of daily means were shown in similar pattern, which NO emissions were increasing during late afternoon ($r^2$=0.04). These emission trends could be because soil temperature and moisture influence importantly soil microbiology.

A Study on the PM2.5 Concentration in the Car in Jeonju Downtown (전주시 중심가를 주행중인 승용차내 초미세먼지(PM2.5) 농도 변화에 대한 연구)

  • Moon, Hyung Suk;Kim, Jong Soo;Kim, In Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.10
    • /
    • pp.717-723
    • /
    • 2013
  • The Korea Ministry of Environment prepares some paticulate matter eliminate measures for national health protection, as the Paticulate Matter ($PM_{2.5}$) exceeds the standard at more than half of the monitoring posts installed in the nation's big cities. At the center of JeonJu, when measuring the ultrafine particles of inner car at the different driving conditions, at the condition of the Actuator of inner recirculation mode and the Blower of 2-speed, the reduction speed of the ultrafine particles is most fast and the concentration stays low. When the windows are opened during driving, outer pollutants enter the car and also inner paticulate matter flies in all direction, and the increase of passengers causes the scattering of the ultrafine paticles. As the filter for air cleaning, the using of polypropylene non-woven fabric (used commonly now) is most excellent, but for the removal of volatile organic substance as well as the paticulate matter, it is thought that the using of activated carbon fiber filter, carbon adsorbent, is even more excellent.

Measurement of PM2.5 Concentrations and Comparison of Affecting Factors in Residential Houses in Summer and Autumn (여름과 가을의 주택실내 초미세먼지(PM2.5) 농도 측정 및 영향요인 비교)

  • Dongjun Kim;Gihong Min;Jihun Shin;Youngtae Choe;Kilyoong Choi;Sang Hyo Sim;Wonho Yang
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.1
    • /
    • pp.16-24
    • /
    • 2024
  • Background: Indoor PM2.5 concentrations in residential houses can be affected by various factors depending on the season. This is because not only do the climate characteristics depend on the season, but the activity patterns of occupants are also different. Objectives: The purpose of this study is to compare factors affecting indoor PM2.5 concentrations in apartments and detached houses in Daegu according to seasonal changes. Methods: This study included 20 households in Daegu, South Korea. The study was conducted during the summer (from July 10 to August 10, 2023) and the autumn (from September 11 to October 9, 2023). A sensor-based instrument for PM2.5 levels was installed in the living room of each residence, and measurements were taken continuously for 24 hours at intervals of one minute during the measurement period. Based on the air quality monitoring system data in Daegu, outdoor PM2.5 concentrations were estimated using ordinary kriging (OK) in Python. In addition, the indoor activities of the occupants were investigated using a time-activity pattern diary. The affecting factors of indoor PM2.5 concentration were analyzed using multiple regression analysis. Results: Indoor and outdoor PM2.5 concentrations of the residences during summer were 15.27±11.09 ㎍/m3 and 11.52±7.56 ㎍/m3, respectively. Indoor and outdoor PM2.5 concentrations during autumn were 13.82±9.61 ㎍/m3 and 9.57±5.50 ㎍/m3, respectively. The PM2.5 concentrations were higher in summer compared to autumn both indoors and outdoors. The primary factor affecting indoor PM2.5 concentration in summer was occupant activity. On the other hand, during the autumn season, the primary affecting factor was outdoor PM2.5 concentration. Conclusions: Indoor PM2.5 concentration in residential houses is affected by occupant activity such as the inflow of outdoor PM2.5 concentration, cooking, and cleaning, as found in previous studies. However, it was revealed that there were differences depending on the season.

Health and Economic Burden Attributable to Particulate Matter in South Korea: Considering Spatial Variation in Relative Risk (지역간 상대위험도 변동을 고려한 미세먼지 기인 질병부담 및 사회경제적 비용 추정 연구)

  • Byun, Garam;Choi, Yongsoo;Gil, Junsu;Cha, Junil;Lee, Meehye;Lee, Jong-Tae
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.5
    • /
    • pp.486-495
    • /
    • 2021
  • Background: Particulate matter (PM) is one of the leading causes of premature death worldwide. Previous studies in South Korea have applied a relative risk calculated from Western populations when estimating the disease burden attributable to PM. However, the relative risk of PM on health outcomes may not be the same across different countries or regions. Objectives: This study aimed to estimate the premature deaths and socioeconomic costs attributable to long-term exposure to PM in South Korea. We considered not only the difference in PM concentration between regions, but also the difference in relative risk. Methods: National monitoring data of PM concentrations was obtained, and missing values were imputed using the AERMOD model and linear regression model. As a surrogate for relative risk, hazard ratios (HRs) of PM for cardiovascular and respiratory mortality were estimated using the National Health Insurance Service-National Sample Cohort. The nation was divided into five areas (metropolitan, central, southern, south-eastern, and Gangwon-do Province regions). The number of PM attributable deaths in 2018 was calculated at the district level. The socioeconomic cost was derived by multiplying the number of deaths and the statistical value of life. Results: The average PM10 concentration for 2014~2018 was 45.2 ㎍/m3. The association between long-term exposure to PM10 and mortality was heterogeneous between areas. When applying area-specific HRs, 23,811 premature deaths from cardiovascular and respiratory disease in 2018 were attributable to PM10 (reference level 20 ㎍/m3). The corresponding socioeconomic cost was about 31 trillion won. These estimated values were higher than that when applying nationwide HRs. Conclusions: This study is the first research to estimate the premature mortality caused by long-term exposure to PM using relative risks derived from the national population. This study will help precisely identify the national and regional health burden attributed to PM and establish the priorities of air quality policy.