• Title/Summary/Keyword: PM motor

Search Result 675, Processing Time 0.026 seconds

Rotor Position Estimation of 3-Phase PM BLDC Motor by 2Hall-IC, 1Hall-IC (2Hall-IC, 1Hall-IC를 이용한 PM BLDCM의 회전자 위치검출)

  • Lee, Byoung-Kuk;Kim, Yuen-Chung;Yoon, Yong-Ho;Kim, Hack-Seong;Won, Chung-Yuen;Chun, Jang-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.56-64
    • /
    • 2006
  • Generally, Permanent Magnet Brushless DC Motor(PM BLDC) is necessary the Hall-IC to detect the rotor position. But it will take place the operation standstill of motor or error of rotor position detection according to the circumference temperature, humidity, or limited surroundings. This paper propose the algorithm of rotor position detection only using one or two Hall-IC. Therefore we can estimate information of the others phase in sequence through a rotor instead of using three Hall-IC at 3 phase motor. This paper identify the same characteristics, performance and function of protection circuit by the proposed algorithm with the 3 phase PM BLDC motor in comparison with general method.

Design of PM Motor Drive Course and DSP Based Robot Traction System Laboratory

  • Yousfi, Driss;Belkouch, Said;Ouahman, Abdellah Ait;Grenier, Damien;Dehez, Bruno;Richard, Eric
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.647-659
    • /
    • 2010
  • This paper presents a part of North Africa/Europe collaboration results in education to develop project-oriented courses in power electronics and motor drive field. The course aims to teach Permanent Magnet motor drives close to a real world project of significant size and depth so as to be motivational, namely mobile robot project. Particular skills, student will acquire, are those relative to the detailed design and implementation of PM motor controllers in DSP based rapid prototyping environment. Simulation work is completed using graphical modeling tools in Simulink/Plecs, while real-time implementation is achieved by means of eZdspF2812 board and Simulink/TI C2000 Embedded Target tools. This flexible development environment fit the robot traction system very well and provides exactly the functionality necessary for an efficient PM motor drives teaching as demonstrated by a set of simulation and experiments.

Cogging Torque Reduction of Interior Permanent Magnet Motor Using Statistical Method (통계적 기법을 이용한 매입형 영구자석 전동기의 코깅토크 저감)

  • Kim, Jung-Gyo;Lee, Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.6
    • /
    • pp.287-291
    • /
    • 2006
  • Recently, various applications of permanent-magnet(PM) electric motor have been more increased. Compared with the other electric motors, PM electric motor has cogging torque which results from the interaction between PM of rotor and slot-teeth structure of stator. Audible noise and vibration is caused by this cogging torque. So, the reduction of cogging torque is main designing goal of PM electric motor. The purpose of this paper is to realize the decrease of cogging torque using new experimental design and response surface analysis which is one of the statistical methodologies.

Precise Speed Control and Sensorless Technique of PM BLDC Motor Using the PLL Algorithm (PM BLDC 모터의 PLL 알고리즘을 사용한 정밀속도제어 및 센서리스 기법)

  • Lee, Seung-Jun;Yoon, Yong-Ho;Kim, Young-Ran;Won, Chung-Yuen;Choi, You-Young
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.449-454
    • /
    • 2005
  • Brushless DC Motor(PM BLDCM) is widely used in industrial applications due to its high efficiency and power density. In order to increase reliability and reduce system cost, this paper studies particularly applicable method for sensorless PM BLDCM drive system. The resulting third harmonic signal keeps a constant phase relationship with the rotor flux for any motor speed and load condition, and is practically free of noise that can be introduced by the inverter switching, making this a robust sensing method. As a result, the method described here is not sensitive to filtering delays, allowing the motor to achieve a good performance over a wide speed range. In addition, a simple starting method and a speed estimation approach are also proposed.

  • PDF

A Simple and Robust Digital Current Control for a PM Synchronous Motor under the Parameter Variations

  • Kim, Kyeong-Hwa;Baik, In-Cheol;Young, Myung-Joong
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.174-183
    • /
    • 1998
  • A simple and robust digital current control technique for a permanent magnet (PM) synchronous motor under the parameter variations is presented. Among the various current control schemes for an inverter-fed PM synchronous motor drive, the predictive control is known to give a superior performance. This scheme, however, requires the full knowledge of machine parameters and operating conditions, and cannot give a satisfactory response under the parameter mismatch. To overcome such a limitation, the disturbances caused by the parameter variations will be estimated by using a disturbance observer theory and used for the computation of the reference voltages by a feedforward control. Thus, the steady-state control performance can be significantly improved with a relatively simple control algorithm, while retaining the good characteristics of the predictive control. The proposed control scheme is implemented on a PM synchronous motor using the software of DSP TMS320C30 and the effectiveness is verified through the comparative simulations and experiments.

  • PDF

Optimal Design of the PM Stepping Motor by use of the experimental method (실험적 방법에 의한 프린터용 PM형 스테핑 모터의 최적 설계)

  • You, Yong-Min;Oh, Sang-Yeul;Chae, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.24-26
    • /
    • 2004
  • The PM(Permanent Magnet) stepping Motor has been used widely to a variety of industries because of the open-loop control characteristic, a relatively large frequency range of velocity control and non-accumulated error of the step angle. Moreover, It has been gradually applied to office automation, machine intelligence, digital appliance, and automobile parts. This paper presents the optimal design results by use of the experimental method. The design variables of the PM stepping motor are shape of the claw-pole, material of core, and air-gap. As a result, a superior claw-pole PM stepping motor for OA machinery was developed.

  • PDF

Design of a Real Time Simulator for Inverter Unit Test of PM Synchronous Motor (인버터 장치 실험용 영구자석 동기전동기의 실시간 시뮬레이터 설계)

  • Oh, Hyuncheal;An, Byoung Woong;Cho, Kwan Yuhl;Kim, Hag Wone;Cho, Jung Gu;Moon, Yong Gi
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.116-117
    • /
    • 2013
  • The real time simulator for testing the high power inverter unit of a PM synchronous motor is proposed. The power converter of the real time simulator can replaces the dynamo test equipment that consists of a PMSM(PM synchronous motor) and load unit. It is verified by the simulation that the real time simulator has a similar electrical and mechanical characteristics of the PM synchronous motor.

  • PDF

Numerical Analysis on Iron Loss and PM Loss of Permanent Magnet Synchronous Motor Considering the Carrier Harmonics

  • Lee, Dongsu;Kim, Yong-Jae;Jung, Sang-Yong
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.216-219
    • /
    • 2013
  • In this paper, the influence of inverter switching harmonics on iron loss and PM loss of Permanent Magnet Synchronous Motor (PMSM) is numerically investigated by Finite Element Method (FEM). In particular, nonlinear FEM is applied for a multi-layered PM Synchronous Motors (PMSMs), Interior buried PMSM (IPMSM) and PM assisted Synchronous Reluctance Motor (PMa-SynRM), which are adoptively designed and compared for Electric Vehicle (EV) propulsion. In particular, iron loss and PM eddy-current loss under the real current waveform including the carrier harmonics from inverter switching are numerically analyzed with nonlinear FEM by considering the skewed stator structure employed for minimizing spatial harmonics.

Characteristics Analysis of V Shape Pole Changing Memory Motor using Finite Element Method (유한요소법을 이용한 V형상 극변환 메모리 모터의 특성 분석)

  • Kim, Young-Hyun;Kim, Su-Yong;Kim, Jung-Woo;Lee, Jung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.6
    • /
    • pp.872-877
    • /
    • 2015
  • The Permanent Magnet (PM) machine used at speed control using field-weakening control method. But the field-weakening current, which reduces the field flux for high speeds, causes significant copper and core losses. Therefore, this paper deals with the PM performance evaluations in a pole changing memory motor (PCMM). The PCMM can change the number of magnetic poles and produce two types of torque. When the motor operates with eight poles, it produces a magnetic torque at low rotational speeds. When the motor changes to four poles, it produces both magnetic torque and reluctance torque at high speeds. The paper explain the principle and basic characteristics of the motor by using a finite element method magnetic-field analysis, which consists of a PM magnetized by a pulse d-axis current of the armature winding. The results of our experiment show that the proposed motor reduces core loss by 10% and 55% under no-load and load conditions, and doubles the speed range of the motor.

Design Method of the Claw-pole PM Stepping Motor for Scanner (스캐너용 Claw-pole PM형 스테핑 모터의 설계 방법)

  • You, Yong-Min;Oh, Sang-Yeul;Kim, Jick
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.118-121
    • /
    • 2005
  • The claw-pole PM(Permanent Magnet) stepping motor has the advantage of the positioning machine because of a relatively little step angle, facility of control, and detent torque characteristics. Although the research about this motor has been progressed, it was difficult to analyze because of three-dimensional magnetic circuit. This paper proposed a design method of the claw-pole PM stepping motor using 3D-FEA. We established design variables that have an important effect upon the characteristics of the motor, and then peformed analysis of the static and the dynamic characteristics. We also manufactured the test products and practiced the performance tests for verification of the analysis results.

  • PDF