• 제목/요약/키워드: PM magnetization patterns

검색결과 5건 처리시간 0.022초

Analysis on Thrust Characteristics of Slotless Iron-Cored PMLSM According to PM Magnetization Patterns

  • Jang Seok-Myeong;You Dae-Joon;Lee Sung-Ho;Jang Won-Bum
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권1호
    • /
    • pp.27-33
    • /
    • 2005
  • The development of modern high-energy magnet materials has allowed the replacement of field coils in many different types of electromagnetic energy conversion machines. As well, the linear synchronous motor has recently been proposed for linear motion with high efficiency and thrust. Thus, this paper presents an analytical solution for the high thrust and cost reduction of the Iron-Cored Permanent Magnet Linear Synchronous Motor (PMLSM) considering magnetization arrays and geometry. Hence, the superior utilization points in each of the magnetization arrays are provided by the height ratio of the magnet/air-gap and magnet/winding coil, etc. In formulation, the space harmonic method in analytical solutions and the generalized 2-D tensor finite element analysis can be used to evaluate force components in magneto static devices including the magnetostrictive phenomenon.

유한요소법을 이용한 제어 영구자석형 선형동기전도기의 추력특성 개선을 위한 설계 (Design for the Improvement of Force Characteristic in Controlled-PM LSM Maglev Carrier by FEM)

  • 전연도;이주
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권5호
    • /
    • pp.214-220
    • /
    • 2001
  • This paper presents the design schemes for the improvement of force characteristics in a controlled permanent magnet liner synchronous motor (Controlled-PM LSM). The dependence of motor performance on the various design schemes, such as the slot shapes, the magnetization patterns of permanent magnet and the skewing, has been investigated in detail by using finite element method (FEM). The analysis results are verified by the experiment that is performed by a testing machine. From this study, it is known that the skewing of the magnet is the most efficient method in the aspects of detent force reduction and higher force density.

  • PDF

전기폭발법에 의한 Ni 및 Ni-Cu 나노 금속 분말의 제조와 자기적 특성연구 (Study of Synthesis and Magnetic Properties of Ni and Ni-Cu Nano Metal Powders Prepared by the Pulsed Wire Evaporation(PWE) Method)

  • 박중학;엄영랑;김경호;김흥희;이창규
    • 한국분말재료학회지
    • /
    • 제10권2호
    • /
    • pp.83-88
    • /
    • 2003
  • Nanocrystalline materials of Ni and Ni-Cu alloy have been synthesized by the pulsed wire evaporation (PWE) method and these abnormal magnetic properties in the magnetic ordered state have been characterized using both VSM and SQUID in the range of high and low magnetic fields. Ni and Ni-Cu particles with an average size of 20 to 80 nm were found to influence magnetic hysterisis behavior and the results of powder neutron diffraction patterns and saturation magnetization curves are shown to indicate the absence of the NiO phase. The shifted hysterisis loop and irreversibility of the magnetization curve in the high field region were observed in the magnetic-ordered state of both Ni and Ni-Cu. The virgin magnetization curve for Ni slightly spillover on the limited hysterisis loop ($\pm$20kOe). This irreversibility in the high field of 50 kOe can be explained by non-col-linear behavior and the existence of the metastable states of the magnetization at the surface layer (or core) of the particle in the applied magnetic field. Immiscible alloy of Cu-Ni was also found to show irreversibility having two different magnetic phases.

수동형 자기베어링의 최적 설계 (Optimal Design of Passive Magnetic Bearings)

  • 노명규;이지은;유승열
    • Tribology and Lubricants
    • /
    • 제23권6호
    • /
    • pp.283-287
    • /
    • 2007
  • Permanent-magnet (PM) passive bearings use the repulsive forces between the rotor and the stator magnets for the bearing function. It is desirable that the stiffness of the bearing is maximized with the given volume of the magnet. The stiffness is affected by the magnet strength, the number of layers, and the magnetization patterns. Previously, finite-element method (FEM) has been used to maximize the stiffness of the bearing. In this paper, we used the equivalent current sheet method to calculate the stiffness. The validity of this approach is checked against FEM results. The optimized bearing is applied to a micro flywheel energy storage system.

Back EMF Design of an AFPM Motor using PCB Winding by Quasi 3D Space Harmonic Analysis Method

  • Jang, Dae-Kyu;Chang, Jung-Hwan;Jang, Gun-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권5호
    • /
    • pp.730-735
    • /
    • 2012
  • This paper presents a method to design the waveform of a back electromotive force (back EMF) of an axial flux permanent magnet (AFPM) motor using printed circuit board (PCB) windings. When the magnetization distribution of permanent magnet (PM) is given, the magnetic field in the air gap region is calculated by the quasi three dimensional (3D) space harmonic analysis (SHA) method. Once the flux density distribution in the winding region is determined, the required shape of the back EMF can be obtained by adjusting the winding distribution. This can be done by modifying the distance between patterns of PCB to control the harmonics in the winding distribution. The proposed method is verified by finite element analysis (FEA) results and it shows the usefulness of the method in eliminating a specific harmonic component in the back EMF waveform of a motor.