• Title/Summary/Keyword: PM machine

Search Result 510, Processing Time 0.03 seconds

Comparative Study of Flux Regulation Methods for Hybrid Permanent Magnet Axial Field Flux-switching Memory Machines

  • Yang, Gongde;Fu, Xinghe;Lin, Mingyao;Li, Nian;Li, Hao
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.158-167
    • /
    • 2019
  • This research comparatively studies three kinds of flux regulation methods, namely, stored capacitor discharge pulse (SCDP), constant current source pulse (CCSP), and quantitative flux regulation pulse (QFRP), which are used for hybrid permanent magnet (PM) axial field flux-switching memory machines (HPM-AFFSMMs). Through an analysis of the operation principle and the series hybrid PM flux regulation mechanism of the objective machine, the circuit topologies and flux regulation process of these flux regulation methods are addressed in detail. On the basis of a simulation, the flux regulation characteristics of the researched machine during the magnetization and demagnetization processes are comparatively evaluated. Then, machine performance, including back EMF, direct and quadrature axis inductances, and magnetization and demagnetization characteristics, is quantitatively investigated. Results show that the QFRP enables the HPM-AFFSMM to achieve a less harmonic component of back EMF by approximately 7.28% and 7.97% at the magnetization and demagnetization states, respectively, and a more complete magnetization process than the SCDP and CCSP.

Treatment Plan Delivery Accuracy of the ViewRay System in Two-Headed Mode

  • Park, Jong Min;Park, So-Yeon;Wu, Hong-Gyun;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.27 no.3
    • /
    • pp.169-174
    • /
    • 2016
  • The aim of this study is to investigate the delivery accuracy of intensity-modulated radiation therapy (IMRT) plans in the two-headed mode of the ViewRay$^{TM}$ system in comparison with that of the normal operation treatment plan of the machine. For this study, a total of eight IMRT plans and corresponding verification plans were generated (four head and neck, two liver, and two prostate IMRT plans). The delivered dose distributions were measured using ArcCHECK$^{TM}$ with the insertion of an ionization chamber. We measured the delivered dose distributions in three-headed mode (normal operation of the machine), two-headed mode with head 1 disabled, two-headed mode with head 2 disabled, and two-headed mode with head 3 disabled. Therefore, a total of four measurements were performed for each IMRT plan. The global gamma passing rates (3%/3 mm) in three-headed mode, head 1 disabled, head 2 disabled, and head 3 disabled were $99.9{\pm}0.1%$, $99.8{\pm}0.3%$, $99.6{\pm}0.7%$, and $99.7{\pm}0.4%$, respectively. The difference in the gamma passing rates of the three- and two-headed modes was insignificant. With 2%/2 mm, the rates were $96.6{\pm}3.6%$, $97.2{\pm}3.5%$, $95.7{\pm}6.2%$, and $95.5{\pm}4.3%$, respectively. Between three-headed mode and head 3 disabled, a statistically significant difference was observed with a p-value of 0.02; however, the difference was minimal (1.1%). The chamber readings showed differences of approximately 1% between three- and two-headed modes, which were minimal. Therefore, the treatment plan delivery in the two-headed mode of the ViewRay$^{TM}$ system seems accurate and robust.

Preliminary study on a 3D field permanent magnet flux switching machine - from tubular to rotary configurations

  • Wang, Can-Fei;Shen, Jian-Xin
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.505-508
    • /
    • 2012
  • A permanent magnet flux switching (PMFS) machine has a simple rotor, whilst both magnets and coils are set in the stator, resulting in easy removal of heat due to both copper loss and eddy current loss in magnets. However, the volume of magnets used in PMFS machines is usually larger than in conventional PM machines, and leakage flux does exist at the non-airgap side. To make full use of the magnets and gain higher power density, a novel 3-dimensional (3D) field PMFS machine is developed. It combines merits of the tubular linear machine, external-rotor rotary machine and axial-flux rotary machine, hence, offers high power density and peak torque capability, as well as efficient utility of magnets owing to the unique configuration of triple airgap fields.

Ultra Miniature Eddy Current Sensor with 3 Axes for On-Machine-Measurement (기상측정용 3축 구조의 초소형 와전류 센서 개발 및 평가)

  • Kim, Sun-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.27-32
    • /
    • 2010
  • The OMM(On-Machine-Measurement) system has many advantages compare to conventional measurement in the way the time and cost. But, the sensor suitable to OMM system is restrictive use. Touch trigger probe sensor has long time for measurement and non-contact sensor has directional demerit. Because the long mechanical parts such as gear and lead screw for pump, injector and machine tools has big and heavy, unclamp and transferring for measurement in machining process is very difficult. This paper presents a development of ultra miniature eddy current displacement sensor with 3 axes for On-Machine-Measurement system. The accuracy of the sensor is experimentally proved in the grinding machine. In experimental results, the accuracy has under ${\pm}5\;{\mu}m$.

Development of On-machine Measurement System utilizing a Capacitive-type Sensor (정전용량형 센서를 이용한 기상계측시스템의 개발)

  • 김건희;박순섭;박원규;원종호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.391-395
    • /
    • 2002
  • This paper described about the ultra-precision profile measurement of aspheric surfaces using contact probing technique. A contact probe has been designed as a sensing device to obtain measuring resolutions in nanometer regime utilizing a leaf spring mechanism and a capacitive-type sensor. The contact probe is attached on the z-axis during measurement while aspheric objects are supported on the single point diamond turning machine(SPDTM). The machine xz-axis motions are monitored by a set of two orthogonal plane mirror type laser interferometers. Experimental results show that the contact probing technique developed of On-machine Measurement System in this investigation is capable of providing a repeatability of 20 nanometers with a $\pm$20 uncertainty of 300 nanometers.

  • PDF

Operation Principle and Topology Structures of Axial Flux-Switching Hybrid Excitation Synchronous Machine

  • Liu, Xiping;Wang, Chen;Zheng, Aihua
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.312-319
    • /
    • 2012
  • The operation principle of an axial flux-switching hybrid excitation synchronous machine (AFHESM) is analyzed and its topology structures are proposed in this paper. After some comprehensive analysis of the operation principle to axial flux electrical machine, flux-switching electrical machine and hybrid excitation electrical machine, the operation principle of AFHESM is given. Combined with some typical topological structures of hybrid excitation electrical machine, some possible topological structures are proposed and some comprehensive comparisons are carried out. The analysis results show that the stator-separated AFHESM has some advantages such as less AM turns, less impact on the demagnetization of PM, less magnetic flux-leakage and higher efficiency compared to other topologies.

The Effects of Cobait on Wear and Friction Characteristics of PM-HSS (분말고속도공구강의 마찰마모특성에 미치는 Co의 영향)

  • 이한영;백금주;김용진;배종수;홍성현
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.108-114
    • /
    • 1998
  • The mechanical characteristics of the high speed steel by powder metallurgy process(PM-HSS) has been reported to improve with several alloying constituents, such as high carbon, vanadium and cobalt. In this paper, sliding wear test has been conducted using a pin-on-disc machine for three PM-HSS which contains 0%, 5% and 12% cobalt respectively, in order to evaluate the effect of cobalt on wear properties of PM-HSS. The results of this study showed that the wear resistance of PM-HSS has been increased by the addition of cobalt on the range of experimental friction velocities. When compared with the effect of addition of cobalt, the wear resistance of PM-HSS with 5% cobalt has been found to be superior to that of PM-HSS with 12% cobalt.

  • PDF

A Study on a Precision Temperature Control of Oil Coolers with Hot-gas Bypass Manner for Machine Tools Based on Fuzzy Control (퍼지제어를 이용한 공작 기계용 오일 쿨러의 핫가스 바이패스방식 정밀 온도 제어에 관한 연구)

  • Lee, Sang-Yun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.3
    • /
    • pp.205-211
    • /
    • 2013
  • Recently, the needs of system performances such as working speed and processing accuracy in machine tools have been increased. Especially, the working speed increment generates harmful heat at both moving part of the machine tools and handicrafts. The heat is a main drawback to progress accuracy of the processing. Hence, a oil cooler to control temperature is inevitable for the machine tools. In general, two representative control schemes, hot-gas bypass and variable speed control of a compressor, have been adopted in the oil cooler system. This paper deals with design and implementation method of fuzzy controller for obtaining precise temperature characteristic of HB oil cooler system in machine tools. The opening angle of an electronic expansion valve are controlled to keep reference value and room temperature of temperature at oil outlet. Especially, the fuzzy controller is added to suppress temperature fluctuation under abrupt disturbances. Through some experiments, the suggested method can control the target temperature within steady state error of ${\pm}0.22^{\circ}C$.

Modeling and Measurement of Geometric Errors for Machining Center using On-Machine Measurement System (기상계측 시스템을 이용한 머시닝센터의 기하오차 모델링 및 오차측정)

  • Lee, Jae-Jong;Yang, Min-Yang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.201-210
    • /
    • 1999
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric and thermal errors of the machine tools. Therefore, a key requirement for improving te machining accuracy and product quality is to reduce the geometric and thermal errors of machine tools. This study models geometric error for error analysis and develops on-machine measurement system by which the volumetric erors are measured. The geometric error is modeled using form shaping function(FSF) which is defined as the mathematical relationship between form shaping motion of machine tool and machined surface. The constant terms included in the error model are found from the measurement results of on-machine measurement system. The developed on-machine measurement system consists of the spherical ball artifact (SBA), the touch probe unit with a star type stylus, the thermal data logger and the personal computer. Experiments, performed with the developed measurement system, show that the system provides a high measuring accuracy, with repeatability of ${\pm}2{\mu}m$ in X, Y and Z directions.

  • PDF

The Effects of Cobalt on Wear and Friction Characteristics of High Speed Steel by Powder Metallurgy (분말고속도공구강의 마찰마모특성에 미치는 Co의 영향)

  • 이한영;배종수;김용진
    • Tribology and Lubricants
    • /
    • v.15 no.2
    • /
    • pp.156-163
    • /
    • 1999
  • The mechanical characteristics of the high speed steel by Powder metallurgy Process (PM-HSS) has been reported to improve with several alloying constituents, such as high carbon, vanadium and cobalt. In this paper, sliding wear test has been conducted using a pin-on-disc machine for three PM-HSS which contains 0%, 5% and 12% cobalt respectively, in order to evaluate the effect of cobalt on wear properties of PM-HSS. The results of this study showed that the wear resistance of PM-HSS has been increased by the addition of cobalt on the range of experimental friction velocities. When compared with the effect of addition of cobalt, the wear resistance of PM-HSS with 5% cobalt has been found to be superior to that of PM-HSS with 12% cobalt.