• 제목/요약/키워드: PM generator

검색결과 177건 처리시간 0.03초

최대 연간 에너지 생산을 위한 영구자석형 풍력발전기의 최적설계 (Optimal Design of Permanent Magnet Wind Generator for Maximum Annual Energy Production)

  • 정호창;정상용;한성진;이철균
    • 전기학회논문지
    • /
    • 제56권12호
    • /
    • pp.2109-2115
    • /
    • 2007
  • The wind generators have been installed with high output power to increase the energy production and efficiency. Hence, Optimal design of the direct-driven PM wind generator, coupled with F.E.M(Finite Element Method) and Genetic Algorithm(GA), has been performed to maximize the Annual Energy Production(AEP) over the whole wind speed characterized by the statistical model of wind speed distribution. Particularly, the parallel computing via internet web service has been applied to loose excessive computing times for optimization. The results of the optimal design of Surface-Mounted Permanent Magnet Synchronous Generator(SPMSG) are compared with each other candidates to verify the usefulness of the maximizing AEP model.

부하가변에 따른 영구자석형 풍력발전기의 운전특성 해석 (Characteristics Analysis is of Permanent-Magnet Type Wind Generator with Variable Load)

  • 황돈하;강도현;김용주;최경호;배성우;김동희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.121-123
    • /
    • 2002
  • This paper presents the finite-element (FE) analysis results of a permanent-magnet (PM) generator for wind-power applications under different operating conditions. Finite-element method is applied to analyze generator performance at no-load and load with variable resistance and inductance. The results of FE analysis show that proposed PM generator is a useful solution for small-scale wind-turbine systems.

  • PDF

Cogging Torque Reduction in Permanent-Magnet Brushless Generators for Small Wind Turbines

  • Chung, Dae-Won;You, Yong-Min
    • Journal of Magnetics
    • /
    • 제20권2호
    • /
    • pp.176-185
    • /
    • 2015
  • We present the design optimization of the magnetic pole and slot design options that minimize the cogging torque of permanent-magnet (PM) brushless generators for small wind turbine generators. Most small wind-turbines use direct-driven PM generators which have the characteristics of low speed and high efficiency. Small wind-turbines are usually self-starting and require very simple controls. The cogging torque is an inherent characteristic of PM generators, and is mainly caused by the generator's geometry. The inherent the cogging torque can cause problems during turbine start-up and cut-in in order to start softly and to run a power generator even when there is little wind power during turbine start-up. Thus, to improve the operation of small turbines, it is important to minimize the cogging torque. To determine the effects of the cogging torque reductions, we adjust the slot opening width, slot skewing, mounting method of magnets, magnet shape, and the opening and combinations of different numbers of slots per pole. Of these different methods, we combine the methods and optimized the design variables for the most significant design options affecting the cogging torque. Finally, we apply to the target design model and compare FEA simulation and measured results to validate the design optimization.

MADS를 이용한 직접구동형 풍력발전기 최적설계 (Optimal Design of Direct-Driven Wind Generator Using Mesh Adaptive Direct Search(MADS))

  • 박지성;안영준;이철균;김종욱;정상용
    • 조명전기설비학회논문지
    • /
    • 제23권12호
    • /
    • pp.48-57
    • /
    • 2009
  • 본 논문에서는 FEM(Finite Element Method)을 이용한 직접구동형 영구자석 풍력발전기의 최적설계를 위해 최신의 최적화 기법인 MADS(Mesh Adaptive Direct Search)를 적용하였으며, 최적설계 목표는 연간 에너지 생산량(Annual Energy Production : AEP)을 최대화 하는 방향으로 선정하였다. 또한, 풍력발전기의 전 운전영역을 고려하기 위해 해당풍속에서의 통계적 확률밀도와 연간 운전시간을 적용하여 연간 최대에너지 생산량을 산정하였다. 아울러, MADS의 최적설계 결과와 병렬분산 컴퓨팅을 결합한 유전 알고리즘(Genetic Algorithm : GA)의 최적설계 결과를 비교하였으며, MADS는 병렬분산 유전알고리즘에 비해 상대적으로 빠른 수렴성을 나타내었다.

태양열 기반 증기 유동을 이용한 미세먼지 제거 연구 (Solar-driven steam flow for effective removal of particulate matters (PM))

  • 김정주;김정재
    • 한국가시화정보학회지
    • /
    • 제19권3호
    • /
    • pp.130-135
    • /
    • 2021
  • Water vapor has received worldwide large attention due to its broad technological implications ranged from resource production and environmental remediation. Especially, one of the typical areas where the water vapor is important is the removal of PM (particulate matter) which causes a critical hazard to human health. However, most vapor-based PM removal methods are limited in removing PM2.5 by using relatively large water droplets and consume large energy. Here, we propose a superhydrophilic thermally-insulated macroporous membrane to generate steam flow. The water vapor directly captures PM with steam flow and hygroscopic characteristic of PM. The steam, the cluster of water vapor, from the membrane gives rise to high removal efficiencies compared to those of the control case without light illumination. To reveal PM removal mechanism, the steam flow and PM were quantitatively analyzed using PIV measurement. The proposed steam generator could be utilized as an economical and ecofriendly platform for effective PM removal at a fairly low cost in a sustainable, energy-free, and harmless-to-human manner.

750kW Gearless PM 동기발전기 로터프레임 경량화 (Structural optimization for rotor frame of 750kW gearless type PMSG)

  • 홍혁수;박진일;류지윤
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.286-289
    • /
    • 2008
  • Mass of generator is one of the most important characteristic value especially direct drive type wind turbine. This paper introduce how to decease mass of generator rotor frame without declining generator performance. To obtain optimal design of rotor frame, sensitivity analysis using Taguchi method and RSM(response surface method) are have been performed.

  • PDF

공압 시스템을 이용한 바이패스형 매연여과장치의 실험적 연구 (An experimental study on the bypass-type DPF using pneumatic cylinder systems)

  • 김상암
    • 수산해양기술연구
    • /
    • 제54권1호
    • /
    • pp.73-80
    • /
    • 2018
  • Intermittent duty of emergency generator has problems emitting large quantities of PM and NOx in exhaust gas. The aim of this study is to propose DPF system which can be applied to medium-large emergency generators. The system is composed of soot dust collector, silencer and filter trap, which is designed to reduce PM emissions at the emergency generator start-up. The pneumatic system controls a flow direction of exhaust gas to pass through the soot collector and filter trap until the engine reaches complete combustion condition. An experiment is performed to measure PM content and concentration to analyze the performance and characteristics of the proposed system.

부분방전 교정펄스 발생기의 표준화 시스템구축과 불확도 (Setup and Uncertainty of Standard System for Calibrating Pulse Generator of Partial Discharge)

  • 김광화;이상화;이헌진;강동식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1355_1357
    • /
    • 2009
  • This paper describes the standard system for calibrating pulse generator of partial discharge(PD) and its uncertainty. The system is consisted of digital pulse generator, digital recorder and evaluation software. The uncertainty requirement of calibrator charge is less than $\pm$ (0.1pC + 0.03q) and that of pulse duration is less than $\pm$ 10 %. The system can generate various kind of calibration pulses such as single pulse, double pulses, oscillation pulse, long-duration pulse, random pulses and evaluate their uncertainty.

  • PDF

A Novel Region Decision Method with Mesh Adaptive Direct Search Applied to Optimal FEA-Based Design of Interior PM Generator

  • Lee, Dongsu;Son, Byung Kwan;Kim, Jong-Wook;Jung, Sang-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1549-1557
    • /
    • 2018
  • Optimizing the design of large-scale electric machines based on nonlinear finite element analysis (FEA) requires longer computation time than other applications of FEA, mainly due to the huge size of the machines. This paper addresses a new region decision method (RDM) with mesh adaptive direct search (MADS) for the optimal design of wind generators in order to reduce the computation time. The validity of the proposed algorithm is evaluated using Rastrigin and Goldstein-Price benchmark function. Moreover, the algorithm is employed for the optimal design of a 5.6MW interior permanent magnet synchronous generator to minimize the torque ripple. Additionally, mechanical stress analysis as well as electromagnetic field analysis have been implemented to prevent breakdown caused by large centrifugal forces of the modified design.

부하조건을 고려한 영구자석형 동기발전기의 철손 특성 해석 (An Analysis on Core Loss Characteristics for Permanent Magnet Synchronous Generator considering the Load Conditions)

  • 장석명;고경진;김현규;이성호;성태현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 에너지변화시스템부문
    • /
    • pp.55-57
    • /
    • 2009
  • This paper deals with an improved core loss calculation under the load conditions, namely, no-load, AC-load and DC-load of multi-pole PM generator from curve fitting method using modified Steinmetz equation considered anomalous loss. For an accurate calculation, magnetic field analyses in stator core considering the time harmonics are performed. And using the nonlinear finite element analysis (FEA), we applied separated rotating and alternating magnetic field to core loss calculation. In order to verify the core loss results by proposed method, the experimental system for no-load core loss measurement has been implemented with DC motor, power analyzer and manufactured PM generator. And, the analysis results with rotational speed agree extremely well with those obtained by measurement.

  • PDF