• Title/Summary/Keyword: PM Synchronous Motor

Search Result 201, Processing Time 0.028 seconds

New Design of a Permanent Magnet Linear Synchronous Motor for Seamless Movement of Multiple Passive Carriers (다수의 수동형 캐리어를 연속 이송시킬 수 있는 새로운 영구자석 선형동기전동기의 설계)

  • Lee, Ki-Chang;Kim, Min-Tae;Song, Eui-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.456-463
    • /
    • 2015
  • Nowadays, small quantity batch production, which is so-called a flexible manufacturing system, is a major trend in the modern factory automation industry. The demands for new transportation system are increased gradually, with which multiple passive carriers carrying materials and semi-products are precisely and individually controlled along a single closed rail. Thus, a new type of permanent magnet linear synchronous motor (PMLSM), which consists of state coils on a single rail and PM movers as many as carriers, is proposed in this paper. The rail can be segmented as modules with pairs of coils and a current amplifier, which makes the transportation system simple; therefore, the rail can be easily extended and repaired. A design method of the new PMLSM with a single carrier is proposed, which can be thought as a new version of PMLSM, a coil-segmented coreless PMLSM (CS-CLPMLSM). Experimental setup for it is made, and propulsion results show that with the help of a new effective coil selection and switching algorithms, the conventional current-based vector control is sufficient to fulfill the position and velocity control of the new PMLSM. The proposed PMLSM is expected to fulfill seamless servo-control of multiple carriers also in process line, such as a new generation of flat panel display manufacturing line.

Eliminating Method of Estimated Magnetic Flux Offset in Flux based Sensorless Control of PM Synchronous Motor using High Pass filter with Variable Cutoff Frequency (모터 운전 주파수에 동기화된 차단주파수를 갖는 HPF(High pass filter)를 적용한 영구자석 동기전동기의 자속기반 센서리스 제어의 추정 자속 DC offset 제거 기법)

  • Kang, Ji-Hun;Cho, Kwan-Yuhl;Kim, Hag-Wone
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.455-464
    • /
    • 2019
  • The sensorless control based on the flux linkage of PM synchronous motors has excellent position estimation characteristics at low speeds. However, a limitation arises because the integrator of flux estimator is saturated by the DC offset generated during the analog to digital conversion(ADC) process of the measured current. In order to overcome this limitation, HPF with a low cutoff frequency is used. However, the estimation performance is deteriorated (Ed- the verb deteriorate already includes the meaning of 'problem') at high speed due to the low cutoff frequency, and increasing the cutoff frequency of the HPF induces further problems of phase leading and initial starting failure at low speeds. In this paper, the cutoff frequency of HPF was synchronized to the operation frequency of the motor: at low speeds the cutoff frequency was set to low in order to reduce the phase leading of the estimated flux, and at high speeds it was set to high to raise the DC offset removal performance. As a result, the operating range was increased by 200%. Furthermore, a phase compensation algorithm is proposed to reduce the phase leading of the HPF to less than 1.5 degrees over the full operating range. The proposed sensorless control algorithm was verified by experiment with a PM synchronous motor for a washing machine.

Characteristic comparison of double-side PMSM/G according to magnetization pattern for flywheel energy storage system (플라이휠 에너지 저장 시스템용 양측식 영구자석 동기 전동/발전기의 착자 형태에 따른 특성 비교)

  • Jang, Seok-Myeong;Choi, Ji-Hwan;You, Dae-Joon;Seong, So-Yeong;Han, Sang-Chul;Lee, Jeong-Phil
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1021-1022
    • /
    • 2011
  • This paper presents the double side PM synchronous motor/generator for core loss reduction in flywheel energy storage system. The use of double PM rotor causes the elimination of core loss in no-load state of machine. Because flywheel rotational speed is reduced by core loss, double PM rotor is very effective in flywheel system. This paper suggests two types of double side PM rotor, Halbach magnetized array and parallel magnetized array. And characteristic comparison according to thickness of rotor back core is performed.

  • PDF

Speed Field orient control of permanent magnet linear motor according to determination of system rate. (직선형 영구 자석 동기 모터의 시스템 정격 선정에 따른 속도 제어 특성)

  • Jang, Seok-Myeong;You, Dae-Joon;Jang, Won-Bum;Yang, Moon-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1273-1275
    • /
    • 2005
  • This paper presents design of speed control system for slot less iron-cored PM linear synchronous motor using space vector PWM. the design must be considered by the useable limits of the DC link voltage and dynamic operating rage as well as the characteristics of design parameters in a point of system. Therefore, in this paper, the permissible operating range of manufactured motor by determination of rate speed and rate thrust according to switching scheme of DC link voltage are offered. The vector control requires information about rotor position. And we can need to the Hall sensor for sampling current. In order to agree with this purpose, Digital Signal Processor(TMS320F240x) developed for implementation of a speed Field Oriented Control.

  • PDF

A Study on the Vibration and Efficiency Characteristics of PMLSM According to Permanent Magnet Arrangement (영구자석 배열에 따른 PMLSM의 진동 및 효율 특성에 관한 연구)

  • Lee, Dong-Yeup;Lee, Seung-Hoon;Jang, Ki-Bong;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.270-277
    • /
    • 2009
  • This paper deals with a vibration and efficiency characteristics of Permanent Magnet Linear Synchronous Motor according to the PM arrangement. The generated force such as the thrust, detent force, normal force and lateral force are compared with analysis values and experimental ones. Furthermore characteristics of vibration and efficiency are estimated by experiments.

Optimization of Slotless type Permanent Magnet Linear Synchronous Meter using Genetic Algorithms (유전 알고리즘을 이용한 Slotless type PMLSM의 최적화)

  • Lee, Dong-Yeup;Moon, Jae-Youn;Yoon, Kang-Jun;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.849-851
    • /
    • 2003
  • This paper is deal with the method of design for optimum thrust model using genetic algorithms in slotless Permanent Magnet Linear Synchrous Motor (PMLSM). Characteristic analysis method is used 3D space harmonic analysis method. Design parameters are PM width and coil width.

  • PDF

Torque Trajectory Control of Interior PM Synchronous Motor Using Adaptive Input-Output Linearization Technique (적응 입출력 선형화 제어 기법을 이용한 매입형 영구 자석 동기 전동기의 토오크 궤적 제어)

  • Kim, Kyeong-Hwa;Baik, In-Cheol;Kim, Hyun-Soo;Moon, Gun-Woo;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.578-581
    • /
    • 1996
  • A torque trajectory control of the IPM synchronous motor using an adaptive input-output linearization technique is proposed. The input-output linearization is performed using the estimated torque output with the knowledge of machine parameters. The linearized model gives the output torque error under the variation of the flux linkage. To give a good torque tracking in the presence of the flux linkage variation, the flux linkage will be estimated where the adaptation law h derived by the Popov's hyperstability theory and the positivity concept. This estimated value is also used for the generation of the d-axis current command for the maximum torque control. Thus, a good torque tracking and the exact maximum torque-per-current operation will be obtained.

  • PDF

A Study on the Improvement of Torque Characteristics in PM Synchronous Motor (영구자석형 동기 전동기의 토크 특성 개선에 관한 연구)

  • 류시영;이두수
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.231-242
    • /
    • 2001
  • In this paper, we present a method to improve the torque characteristic of PMSM(Permanent Magnet Synchronous Motor) and its hardware realization. It is based on the compensation of sinusoidal current delay caused by phase winding inductances. Since coordinate transformation is not used, simple hard-wired logic in the controller design is adopted and this scheme can eliminates the delay through the coordinate transformation. The delay components are varied according to rotation speeds, but this method can also make it possible to compensate those, dynamically. The control scheme has been verified by experiments on a 4-pole 3-phase PMSM, and the generated torques are increased at whole operation speed ranges.

  • PDF

A Study on the Compensation of the Inductance Parameters of Interior Permanent-Magnet Synchronous Motors Affected by the Magnet Size

  • Jang, Ik-Sang;Lee, Hyung-Woo;Kim, Won-Ho;Cho, Su-Yeon;Kim, Mi-Jung;Lee, Ki-Doek;Lee, Ju
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.74-76
    • /
    • 2011
  • Interior permanent-magnet synchronous motors (IPMSMs) produce both magnetic and reluctance torques. The reluctance torque is due to the difference between the d- and q-axis inductances based on the geometric rotor structure. The steady-state performance analysis and precise control of the IPMSMs greatly depend on the accurate determination of the parameters. The three essential parameters of the IPMSMs are the armature flux linkage of the permanent magnet, the d-axis inductance, and the q-axis inductance. In the basic design step of an IPMSM, the inductance parameters are very important for determining the motor characteristics, such as the input voltage, torque, and efficiency. Thus, it is very important to accurately estimate the values of the motor inductances. The inductance parameters of IPMSMs have nonlinear characteristics along the magnet size because the iron core is saturated by the magnet and armature reaction fluxes. In this study, the inductance parameters were calculated using both the magnetic-equivalent-circuit method and the finite-element method (FEM). Then the calculated parameters were compensated by the saturation coefficient function, which was also calculated via the magnetic-equivalent-circuit method and FEM.

Investigation on Direct Driven IPMSM for Next Generation Locomotive (차세대 전동차용 직접 구동용 매입형 영구자석 동기전동기의 특성 고찰)

  • Kim, Min-Seok;Park, Ji-Seong;Kim, Dae-Kwang;Kim, Jung-Chul;Jung, Sang-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.4
    • /
    • pp.398-403
    • /
    • 2008
  • The propulsion for locomotive application has changed from the DC motor system to the induction motor system. Although the induction motor system has almost reached the stage of maturity, this system also needs to be changed to the PM motor system for the direct drive without using reduction gear. Thus, the IPMSM (Interior buried Permanent Magnet Synchronous Motor) has been adopted to meet the locomotive driving specification. Where the wheel is directly dirven by the traction motor. In this paper, the investigation on IPMSM satisfying driving specifications for the direct drive has been performed using the advanced FEM.