• Title/Summary/Keyword: PM Alloys

Search Result 85, Processing Time 0.019 seconds

$M\"{o}ssbauer$ studies of $NdFe_{10.7}TiM{0.3}(M\;=\;B,\;Ti)$ ($NdFe_{10.7}TiM{0.3}(M\;=\;B,\;Ti)$$M\"{o}ssbauer$ 연구)

  • 김철성;이용종;김윤배;김창석
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.1
    • /
    • pp.64-70
    • /
    • 1995
  • The authors have studied crystallographic and magrletic properties of $NdFe_{10.7}TiM_{0.3}(M=B,\;Ti)$ by X-ray diffraction, VSM magnetometer, and Mossbauer spectrometer. The Alloys were prepared by arc-melting under argon atmosphere. The $NdFe_{10.7}TiM_{0.3}$ has pure single phase, whereas the $NdFe_{10.7}Ti_{1.3}$ contains some $\alpha-Fe$, from powder X-ray diffractometry. The $NdFe_{10.7}TiM_{0.3}$ has the $ThMn_{12}$-type tetragonal structure with $a_{0}=8.587\;{\AA}\;and\;c_{0}=4.788\;{\AA}$. The Curie temperature ($T_c$) is $570{\pm}3\;K$ from $M\"{o}ssbauer$ spectroscopy performed at various temperatures ranging from 13 to 770 K. Each spectrum of below $T_c$ was fitted with five subspectra of Fe sites in the structure ($8i_{1},\;8i_{2},\;8j_{1},\;8j_{2}\;and\;8f$). The area fraction of the subspectra at room temperature are 16.4, 8.2, 14.8, 21.3 and 39.3 %, respectively. Magenetic hyperfine fields for the Fe sites decrease in the order, $H_{hf}(8i)>H_{hf}(8j)>H_{hf}(8f)$.

  • PDF

AN EXPERIMENTAL STUDY ON THE BONDING STRENGTH OF THE JOINED AMALGAM RESTORATION (아말감 충전물간(充塡物間)의 결합강도(結合強度)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Chung, In-Young;Min, Byung-Soon;Choi, Ho-Young;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.10 no.1
    • /
    • pp.153-160
    • /
    • 1984
  • The purpose of this study was to observe the tensile and bonding strength of the joined amalgam restoration. Amalgam alloys of fine-cut (F-type), spherical (S-type), and dispersed type (D-type) were selected in this study, and all specimens were divided into three groups according to the condensation methods as follows. Group I : the control group which condense the same kinds of mixed amalgam into the whole part of the mold respectively. Group II : the group which condense a mix of amalgam into one half of the mold, and then condense a new mix of amalgam into the rest half of the mold 15 minutes later. Group III : the group which condense a mixed amalgam into one half of the mold, and then condense a new mix of amalgam into the rest half of the mold 7 days later. All specimens were stored in incubator at $37{\pm}1^{\circ}C$ for seven days with immersing in saline solution before testing. The tensile and bonding strength of them were measured with Instron Universal Testing machine. The results were as follows: 1. In Group I, the order of tensile strength was F-type, S-type, and D-type. 2. In case of bonding of S-type + S-type, the difference of the bonding strength between Group II and III was not significant. (P> 0.05) 3. The bonding strength of F-type + S-type of Group II was marked the highest in value, and the lowest bonding strength was showed in bonded D-type + D-type of Group III. 4. In case of bonding with the different kinds of amalgam alloy in Group II, the specimen bonded to F-type was marked the highest bonding strength, and the specimen bonded with F-type was marked the lowest one. In Group II, the bonding strength of the specimens bonded with the same kinds of amalgam alloy was presented as the same order as that of Group I. 5. In Group III, the specimen connected with D-type marked the lowest bonding strength of all specimens. In Group III, the bonding strength of the specimens connected with the same kinds of amalgam alloy was the order of S-type + S-type, F-type + F-type, and D-type + D-type.

  • PDF

Distributions of Hyperfine Parameters in Amorphous $Fe_{83}B_9Nb_7Cu_1$ Alloys (비정질 $Fe_{83}B_9Nb_7Cu_1$의 M$\)

  • 윤성현;김성백;김철성
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.6
    • /
    • pp.271-277
    • /
    • 1999
  • Amorphous $Fe_{83}B_9Nb_7Cu_1$ alloy has been studied by M$\"{o}$ssbauer spectroscopy. Revised Vincze method was used and distributions of hyperfine field, isomer shift, and quadrupole line broadening of the sample at various temperatures have been evaluated and Curie temperature and $H_{hf}\;(0)$ were calculated to be 393 K and 231 kOe, respectively. Temperature variation of reduced average hyperfine field shows a flattered curvein comparison with the Brillouin curve for S=1. This behavior can be explained on the basis of Handrich molecular field model, in which the parameter Δ, which is a measure of fluctuation in exchange interactions, is assumed to have the temperature dependence ${Delta}=0.75-0.64{\tau}+0.47{\tau}^2$ where $\tau$ is $T/T_C$. At low temperature, the average hyperfine field can be fitted to $H_{hf}\;(T)=H_{hf}\;(0)\;[1-0.44\;(T/T_C)^{3/2}-0.28(T/T_C)^{5/2}-… ]$, which indicates the presence long wave length spin wave excitations. At temperature near TC, reduced average hyperfine field varies as $1.00\;[1-T/T_C]^{0.39}$. It is also found that half-width of the hyperfine field distribution was 102 kOe (3.29 mm/s) at 13 K and decreased monotonically as temperature increased. Above the Curie temperature, an average quadrupole splitting value of 0.43 mm/s was found. Average line broadening due to quadrupole splitting distribution was 0.31 mm/s at 13 K and decreases monotonically to 0.23 mm/s at 320 K, whereas that due to the isomer shift distribution is 0.1 mm/s at 13 K and 0.072 mm/s at 320 K, which is much smaller than that of both hyperfine field and quadrupole splitting. The temperature dependence of the isomer shift can be fitted within the harmonic approximation to a Deybe model with a Debye temperature ${Theta}_D=424{\pm}5K$.TEX>.

  • PDF

A Study on Corrosion according to Distance between Amalgam and Dissimilar Metals (아말감과 이종(異種)금속의 거리에 따른 부식에 대한 고찰)

  • Kim, Ju-won;Jeong, Eun-gyeong
    • Journal of dental hygiene science
    • /
    • v.4 no.3
    • /
    • pp.103-109
    • /
    • 2004
  • The present study prepared 72 test samples - 24 made of amalgam alloy, 24 of Verabond (Ni-Cr alloy) for crown and 24 of Talladium $^{TM}alloy$ for denture - according to the manufacturers' manuals and general method in consideration of the width of the mesial-distal dental crown of the lower $1^{st}$ molar and MOD cavity in clinics, put them in a 200 ml beaker containing 80 ml of artificial saliva, and measured their galvanic corrosion at distances of 0 mm, 7 mm and 40 mm after 7 days. Isolated metals in the electrolyte such as Cu, Ag, Ni, Cr, Sn, Zn and Hg were quantitatively analyzed with Inductively Coupled Plasma - Atomic Emission Spectrometer (ICP-AES, JY-50P, VG Elemental Co. France), and from the results were drawn conclusions as follows. First, Cu, Sn, Ag, Hg and Zn were highly advantageous when amalgam contacted gold alloy compared to Ni-Cr alloy for crown and Talladium alloy for denture. In addition, although gold alloy was finest in terms of oral tissue and biocompatibility, it was most disadvantageous when it was with amalgam. Second, when amalgam contacted gold alloy, heavy metals such as Ni and Cr were not isolated at all because gold alloy did not contain such elements but Sn was isolated as much as $227.1{\pm}18.0035{\mu}g/cm^2$ although it was not included in the composition either. Hg was also isolated. These elements are assumed to have been isolated from amalgam itself. Third, when amalgam alloy was apart from gold alloy 0 mm, 7 mm and 40 mm, Cu and Ag showed significance but Hg did not. This suggests that gold alloy must not be used together with amalgam, and must not be used between dissimilar prostheses regardless of distance. Fourth, when amalgam alloy contacted Ni-Cr alloy for crown, Ag was not isolated from the amalgam, but Zn, Ni, Sn, Hg and Cu were isolated in order of quantity. Significance was observed according to distance - 0 mm, 7 mm and 40 mm. Hg was not isolated but heavy metals Ni and Cr were isolated. If amalgam alloy was in the opposite arch or it was apart from Ni-Cr alloy for crown, the isolation Hg was less than that when amalgam alloy contacted Ni-Cr alloy for crown. Fifth, when amalgam alloy contacted Talladium alloy for denture, significance was observed at distances of 0mm, 7 mm and 40 mm. Hg was not isolated but heavy metals Ni and Cr were isolated. If amalgam alloy was in the opposite arch or it was apart from Talladium alloy for denture, the isolation Hg was less than that when amalgam alloy contacted Talladium alloy for denture. Sixth, according to the result of ICPES test on Cu, Sn, Ag, Hg, Zn, Ni and Cr of amalgam alloy, gold ally, Verabond and Talladium alloy when these alloys contacted artificial saliva, significance was observed in Cu and Hg. Seventh, when amalgam alloy contracted two non-precious metals Ni-Cr alloy for crown and Talladium alloy for denture in artificial saliva, significance was observed in the isolated by-products of Hg, Ni and Cr according to distance.

  • PDF

Magnetic Properties of $ThMn_{12}-type$$NdFe_{10.7}Ti_{1.2}Mo_{0.1}$>$Ti_{1.2}Mo_{0.1}$ ($ThMn_{12}$$NdFe_{10.7}Ti_{1.2}Mo_{0.1}$의 미세구조 및 자기적 성질 연구)

  • 안성용;이승화;김철성;김윤배;김창석
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.2
    • /
    • pp.90-96
    • /
    • 1997
  • We have studied crystallographic and magnetic properties of $NdFe_{10.7}Ti_ {1.2}Mo_{0.1}$ by Mossbauer spectroscopy, X-ray diffraction and vibrating sample magnetometer (VSM). The alloys were prepared by arc-melting under an argon atmosphere. The $NdFe_{10.7}Ti_{1.2}Mo_{0.1}$ has pure a single phase, whereas $NdFe_{10.7}Ti_{1.3}$ contains some $\alpha$-Fe, conformed with X-ray diffractometry and Mossbauer measurements. The $NdFe_{10.7}Ti_ {1.2}Mo_{0.1}$ has a $ThMn_{12}-type$ tetragonal structure with $a_0=8.637{\AA}$ and $c_0=4.807{\AA}$. The Curie temperature ($T_c$) is 600 K from the result of Mossbauer measurement performed at various temperatures ranging from 13 to 800 K. Each spectrum of below $T_c$ is fitted with five subspectra of Fe sites in the structure ($8i_1, 8i_2, 8j_2, 8j_1, 8f$). The area fractions of the subspectra at room temperature are 12.3%, 14.0%, 21.0% 11.8%, 40.9%, respectively. Magnetic hyperfine fields for the Fe sites decrease in the order, $H_{hf}(8i)>H_{hf}(8j)>H_{hf}(8f)$. The abrupt changes in the magnetic hyperfine field, an magnetic moment observed at about 160 K in $NdFe_ {10.7} Ti_{1.2}Mo_{0.1}$ are attributed to spin reorientations. The average hyperfine field of the $NdFe_{10.7}Ti_{1.2}Mo_{0.1}$ shows a temperature dependence of $[H_{hf}(T)-H_{hf}(0)]/H_{hf}(0)=-0.34(T/T_C)^{3/2}-0.14(T/T_C)^{5/2}$ for $T/T_c<0.7$, indicative of spin wave excitation. The Debye temperatures of $NdFe_{10.7}Ti_{1.2}Mo_{0.1}$ is found to be Θ=340$\pm$5 K.

  • PDF