• 제목/요약/키워드: PM(particulate matter)

검색결과 820건 처리시간 0.026초

미세먼지 계절관리제 시행 여부에 따른 실내 PM2.5 농도 분포 및 노출에 따른 건강위해성 평가 (Indoor PM2.5 Concentration Distribution and Health Risk Assessment according to the Implementation of a Seasonal Management System)

  • 박신영;윤단기;장혁;윤성원;이철민
    • 한국환경보건학회지
    • /
    • 제49권4호
    • /
    • pp.218-227
    • /
    • 2023
  • Background: Since 2019, the Ministry of Environment has implemented a seasonal fine dust management system from December to March, targeting high PM2.5 levels with the aim of reducing PM2.5 concentrations and protecting public health. The focus of improving the seasonal management system lies in the atmospheric PM2.5 levels. Considering the primary goal of protecting public health, it is necessary to analyze the policy effects from an exposure perspective rather than a concentration-based approach. Objectives: This study aims to quantitatively assess the improvement of indoor PM2.5 levels and the health impacts of the seasonal management system by comparing the periods before and during its implementation in residential environments. Methods: PM2.5 concentrations within residential environments in a metropolitan area were measured using an optical particle counter (IAQ-C7, K-weather, Ltd, Korea) at one-minute intervals during the pre-implementation period (November 21~25, 2022) and during the implementation period (December 19~23, 2022). Based on the measured PM2.5 concentrations, a quantitative evaluation of cancer and mortality risks was conducted according to age and gender. Results: The results of comparing indoor and outdoor PM2.5 concentrations before and during the implementation of the seasonal management system showed a decrease of approximately 56.6% and 47.9%, respectively. Health risk assessments revealed that both the safety-limit-based and safety-target-based Hazard Quotients (HQ) exceeded the threshold of 0.1 for children under 19 years of age, both before and after the implementation. The mortality risk decreased by approximately 47.9% after the implementation, with children aged 0-9 showing the highest mortality risk at 0.9%. Conclusions: The findings of this study confirmed the positive health impacts of the seasonal management system across all age groups, particularly children under 19 who are more vulnerable to fine dust exposure.

VAV/BPFS(Variable-Air-Volume/Bypass Filtration System) 의 실내환경 적응에 관한 연구 (A Study on the Application of VAV/BPFS(Variable-Air-Volume/Bypass Filtration System) for Indoor Air Environment)

  • 최성우
    • 한국환경과학회지
    • /
    • 제12권12호
    • /
    • pp.1235-1243
    • /
    • 2003
  • Under controlled conditions in an environmental chamber, 24 experiments were performed to compare the ability of a Variable-Air-Volume/Bypass Filtration System(VAV/BPFS) to remove indoor pollutants and to conserve energy with the ability of conventional Variable Air Volume(VAV) system. The specific conclusions of this paper were; first, the VAV/BPFS was more efficient than the VAV system in removing particulate matter, TVOC, and target VOCs. The total effective removal rate of PM for the VAV/BPFS was two times as high as that of the VAV system. The total effective removal rate of TVOC for the VAV/BPFS was 20 percent higher than that of the VAV system. Also each target VOC concentration was reduced by using the VAV/BPFS. Second, clean air delivery rate was increased by using VAV/BPFS due to additional filtration rate. Otherwise, the VAV/BPFS decreased outdoor supply air rate above 25 percent relative to the rate of VAV system. Third, total energy consumption by the VAV/BPFS was lower than that of the VAV system during the period with indoor thermal load, occupied time. The energy saving of the VAV/BPFS ranged from 11 to 16 percent. The VAV/BPFS improves indoor air quality more efficiently than the VAV system, and it reduced energy consumption. Retrofitting the VAV system with the VAV/BPFS was easy The use of VAV/BPFS is, therefore, recommended far buildings with VAV system as well as for buildings at designing stage.

Emissions of Marine Heavy Fuel Oil in the Spray Flame

  • An, Suk-Heon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권7호
    • /
    • pp.1030-1035
    • /
    • 2008
  • Recently, the International Maritime Organization makes an effort for an effective solution against the emissions from shipping in the international maritime industry. The objective of the study was to quantify the exhaust emissions of marine heavy fuel oil in the combustion process of the spray flame. An experiment was performed to measure CO, $CO_2$, NOx, $SO_2$, ${N_2}O$, DS, SOF and the other components with the flame temperature. The sampling probe was directly set up in the flame fields at each position of 103, 324, 545, 766 and 987mm vertically apart from the fuel-injected nozzle in the burner furnace. From the results of the study, it was estimated that approximately 270ppm of oxides of nitrogen (NOx), $1000{\sim}1400ppm$ of sulfur dioxide ($SO_2$), 8ppm of nitrous oxide (${N_2}O$), $2.0{\sim}2.5g/m^3$ of particulate matter (PM) divided with dry soot (DS) and soluble organic fraction (SOF) and $60{\sim}80mg/m^3$ of sulfuric acid. With respect to further development of this work, the emission quantification could also be applied to assessing emission reduction from the international shipping.

HCCI 엔진에서 엔진성능 및 배출에 미치는 EGR의 영향 (A Study on the Effects of EGR on Engine Performance and Emissions of a HCCI(Homogeneous Charge Compression Ignition) Engine)

  • 한성빈;장용훈
    • 대한기계학회논문집B
    • /
    • 제27권11호
    • /
    • pp.1630-1636
    • /
    • 2003
  • Automobile companies and research institutions in leading automobile-manufacturing nations have recently been very active with research regarding the HCCI engine for use in future vehicles. Because HCCI engines take advantage of high compression ratio and heat release rate, they exhibit high efficiency found in compression ignition engines. HCCI engines also utilize a lean air/fuel ratio resulting in low emissions of NO$_{x}$ and PM (particulate matter). The objective of this research is to determine the effects of EGR rate on the combustion processes of HCCI. for this purpose, a 4-cylinder, compression ignition engine was converted into a HCCI engine, and a heating device was installed to raise the temperature of the intake air and also to make it more consistent. In addition, a pressure sensor was inserted into each of the cylinders to investigate the differences in characteristics among the cylinders. The experimental study of the effects of EGR rate on various gas emissions, engine performance, etc. should prove to be a valuable source of information for the development of the HCCI engine.e.

X선 위상차 가시화 기법을 이용한 GDI 인젝터 노즐 근방의 분무 간 상호간섭 해석 (Analyzing the Spray-to-spray Interaction of GDI Injector Nozzle in the Near-field Using X-ray Phase-Contrast Imaging)

  • 배규한;문석수
    • 한국분무공학회지
    • /
    • 제25권2호
    • /
    • pp.60-67
    • /
    • 2020
  • Despite its benefit in engine thermal efficiency, gasoline-direct-injection (GDI) engines generate substantial particulate matter (PM) emissions compared to conventional port-fuel-injection (PFI) engines. One of the reasons for this is that the spray collapse caused by the spray-to-spray interaction forms the locally rich fuel-air mixture and increases the fuel wall film. Previous studies have investigated the spray collapse phenomenon through the macroscopic observation of spray behavior using laser optical techniques, but it is somewhat difficult to understand the interaction between sprays that is initiated in the near-nozzle region within 10 mm from the nozzle exit. In this study, the spray structure, droplet size and velocity data were obtained using an X-ray imaging technique from the near-nozzle to the downstream of the spray to investigate the spray-to-spray interaction and discuss the effects of spray collapse on local droplet size and velocity distribution. It was found that as the ambient density increases, the spray collapse was promoted due to the intensified spray-to-spray interaction, thereby increasing the local droplet size and velocity from the near-nozzle region as a result of droplet collision/coalescence.

딤플 튜브형 EGR Cooler 구조건전성 및 열효율 평가 (Evaluation of Structural Integrity and Heat Exchange Efficiency for Dimpled Tube Type EGR Cooler)

  • 서영호;이현민;박중원;구태완;김정;강범수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.554-559
    • /
    • 2008
  • Most of vehicle manufacturers have applied exhaust gas recirculation (EGR) system to the development of diesel engines in order to obtain the high thermal efficiency without $NO_X$ and Particulate Matter (PM) emitted from the engine. EGR system, which reflow a cooled exhaust gas from vehicles burning diesel as fuel to a combustion chamber of engine, has been used to solve this problem. In order to confirm the safety of the EGR system, finite element analysis was carried out. The safety of EGR system against temperature variation in the shell and tubes was evaluated through the thermal and structural analysis, and the modal analysis using ANSYS was also performed. Finally, the performance of EGR system was verified through the experiment and numerical simulation using effectiveness-NTU method. Program for the estimation of the heat exchange efficiency of the EGR system with regard to the dimpled tube shape was developed.

  • PDF

Non-edible Vegetable Oils for Alternative Fuel in Compression Ignition Engines

  • No, Soo-Young
    • 한국분무공학회지
    • /
    • 제14권2호
    • /
    • pp.49-58
    • /
    • 2009
  • Non-edible vegetable oils instead of edible vegetable oils as a substitute for diesel fuel are getting a renewed attention because of global reduction of green house gases and concerns for long-term food and energy security. Out of various non-edible vegetable oils, karanja, mahua, linseed, rubber seed and cotton seed oils are selected in this study. A brief review of recent works related to the application of the above five vegetable oils and its derivatives in CI engines is presented. The production technologies of biodiesel based on non-edible vegetable oils are introduced. Problems in vegetable oil or biodiesel fuelled CI engine are included. In addition, future works related to spray characteristics of non-edible vegetable oil or biodiesel from it are discussed. The biodiesel fuel, irrespective of the feedstock used, results in a decrease in the emission of hydrocardon (HC), carbon monoxide (CO), particulate matter (PM) and sulphur dioxide ($SO_2$). It is also said to be carbon neutral as it contributes no net carbon dioxide to the atmosphere. Only oxides of nitrogen (NOx) are reported to increase which is due to oxygen content in the biodiesel fuel. The systematic assessment of spray char-acteristics of neat vegetable oils and its blends, neat biodiesel and its blends f3r use as diesel engine fuels is required.

  • PDF

가시화 측정을 이용한 증발디젤분무의 기초 연구 (A Basic study on the Evaporative Diesel Spray with Visible Measurement)

  • 염정국
    • 동력기계공학회지
    • /
    • 제13권3호
    • /
    • pp.20-26
    • /
    • 2009
  • 디젤기관에서 배출되는 유해배출성분인 NOx(Nitrogen oxides)와 PM(Particulate matter)은 기관 실린더내의 혼합기 분포에 의해 그 생성이 지배된다. 이 때문에 그 유해배출물들을 저감하기 위해서는 연소의 전단계인 혼합기 분포 및 그 생성과정의 해석은 매우 중요하다. 디젤기관에서 노즐로부터 분사된 연료는 주위기체와 혼합기를 형성하는 과정에서 액체에서 기체로 상변화를 동반한다. 따라서 분무의 혼합기형성과정을 해석하기 위해서는 액상과 기상을 동시에 분리하여 계측하는 것이 필요하다. 그러므로 본 연구에서는 디젤분무를 대상으로 Melton 등이 제안한 엑시플렉스(Exciplex) 형광법을 이용하여, 분무의 액상과 기상을 동시에 2차원분리해서 가시화촬영을 행하였다. 그 엑시플렉스 형광법을 이용하여 획득한 이미지에 화상 응용해석을 실시하여 비정상증발디젤분무의 혼합기형성과정에 대한 정보를 얻고자 하였다. 엑시플렉스 형광법을 이용해서 증발분무의 거동측성을 해석한 결과 프랙틸해석을 이용한 분무 흐트러짐(Disturbance)의 평가에서 플랙틸차원은 분사압력의 변화에 관계없이 하나의 값, 약 1.1로 정리 할 수 있고, 그 결과 각 분사압력에 대한 분무 기상외곽곡선(외주)은 거의 동일한 정도의 요철형상을 갖는다.

  • PDF

디젤엔진에서 수소 환원제 공급 조건에 따른 LNT 촉매 성능 (Performance of LNT Catalyst according to the Supply Condition of Hydrogen Reductants for Diesel Engine)

  • 박철웅;김창기;최영;강건용
    • 한국자동차공학회논문집
    • /
    • 제17권3호
    • /
    • pp.142-148
    • /
    • 2009
  • The direct injection(DI) diesel engine has become a prime candidate for future transportation needs because of its high thermal efficiency. However, nitrogen oxides(NOx) increase in the local high temperature regions and particulate matter (PM) increases in the diffusion flame region within diesel combustion. Therefore, the demand for developing a suitable after treatment device has been increased. NOx absorbing catalysts are based on the concept of NOx storage and release making it possible to reduce NOx emission in net oxidizing gas conditions. This De-NOx system, called the LNT(Lean NOx Trap) catalyst, absorbs NOx in lean exhaust gas conditions and release it in rich conditions. This technology can give high NOx conversion efficiency, but the right amount of reducing agent should be supplied into the catalytic converter at the right time. In this research, a performance characteristics of LNT with a hydrogen enriched gas as a reductant was examined and strategies of controlling the injection and rich exhaust gas condition were studied. The NOx reduction efficiency is closely connected to the injection timing and duration of reductant. LNT can reduce NOx efficiently with only 1 % fuel penalty.

3중분사가 HSDI 디젤엔진의 성능과 배기에 미치는 영향 (The Effect of Triple Injection on Engine Performance and Emissions in a HSDI Diesel Engine)

  • 최욱;박철웅;국상훈;배충식
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.40-57
    • /
    • 2004
  • The effects of triple (pilot, main and after) injection on combustion and emission characteristics in a HSDI (High-Speed Direct Injection) diesel engine were investigated using a single-cylinder optical diesel engine equipped with a common-rail injection system. The pilot injection affected the spray and combustion evolution of the following main injection. It was found that the pilot injection reduced the ignition delay, which led to lowered NOx (Nitric Oxides) level, and increased IMEP (Indicated Mean Effective Pressure) due to slow combustion pace during an expansion stroke. The after-injection was shown to be effective in reducing PM (Particulate Matter) even when a small amount of fuel was added. The results suggest that a proper combination of individual injection strategy could bring about a good synergetic effect on engine performance and emission.