• Title/Summary/Keyword: PM(particulate matter)

Search Result 820, Processing Time 0.032 seconds

Performance of Air Fresher System for the Removal of Various Odorants Released from Foodstuffs

  • Kim, Ki-Hyun;Adelodun, Adedeji A.;Deep, Akash;Kwon, Eilhann E.;Jeon, Eui-Chan;Kim, Yong-Hyun;Jo, Sang-Hee;Lee, Min-Hee;Cho, Sung-Back;Hwang, Ok-Hwa
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.1
    • /
    • pp.37-53
    • /
    • 2017
  • The effectiveness of four air fresher (AF) systems was evaluated with respect to their removal efficiencies against offensive odorants. For this purpose, malodorous species were generated by exposing freshly cooked foods emitting odorants with levels moderately above their respective threshold values in a confined room. The deodorization efficiency of the four AF systems was then tested for a period of 30 min by estimating the extent of reduction in odorant levels after the operation of each AF. The removal efficiency of the four AF units against each odorant was evaluated as follows: (1) between AF products from different manufacturers, (2) between odorants and ultrafine particulate matter ($PM_{2.5}$), and (3) between operation and natural degassing. The average sorptive removal of odorants was generally <80% and considered less effective or non-effective relative to $PM_{2.5}$. Further examination of odor reduction, if evaluated in terms of odor indices like odor intensity (OI) and odor activity value (OAV), recorded a mean of 33% and 87%, respectively. The overall results of this study confirmed that all tested AF units were not effective to resolve odor problems created under our testing conditions.

A Study on the Characteristic and Droplet Uniformity of Spray Injection to Exhaust Gas Flow from Urea Solution Injector (Urea 수용액의 배기가스 유동장내 분무 특성과 분무 균일도에 관한 연구)

  • Oh, Jung-Mo;Cha, Won-Sim;Kim, Ki-Bum;Lee, Jin-Ha;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.83-89
    • /
    • 2011
  • Diesel engines can produce higher fuel efficiency and lower $CO_2$ emission, they are subject to ever more stringent emission regulation. However, there are two major emission concerns fo diesel engines like such as particulate matter (PM) and nitrogen oxides (NOx). Moreover, it is not easy to satisfy the regulations on the emission of NOx and PM, which are getting more strengthened. One of the solutions is to apply the new combustion concept using multistage injection such as HCCI and PCCI. The other solution is to apply after-treatment systems. For example, lean NOx trap catalyst, Urea-SCR and others have various advantages and disadvantages Especially, Urea-SCR system have advantages such as a high conversion efficiency and a wide operation conditions. Hence the key factor to implementation of Urea-SCR technology, good mixing of urea(Ammonia) and gas, reducing Ammonia slip. Urea mixer components are required to facilitate evaporation and mixing because the liquid state of urea poses significant barriers for evaporation, and the distance to mixer is the most critical that affect mixer performance. In this study, to find out the distance from injector to mixer and simulation factor, a laser diagnostics and high speed camera are used to analyze urea injector spray characteristics and to present a distribution of urea solution in transparent manifold In addition, Droplet Uniformity Index is calculated from the acquired images by using image processing method to clarify the distribution of spray.

Advanced Forecasting Approach to Improve Uncertainty of Solar Irradiance Associated with Aerosol Direct Effects

  • Kim, Dong Hyeok;Yoo, Jung Woo;Lee, Hwa Woon;Park, Soon Young;Kim, Hyun Goo
    • Journal of Environmental Science International
    • /
    • v.26 no.10
    • /
    • pp.1167-1180
    • /
    • 2017
  • Numerical Weather Prediction (NWP) models such as the Weather Research and Forecasting (WRF) model are essential for forecasting one-day-ahead solar irradiance. In order to evaluate the performance of the WRF in forecasting solar irradiance over the Korean Peninsula, we compared WRF prediction data from 2008 to 2010 corresponding to weather observation data (OBS) from the Korean Meteorological Administration (KMA). The WRF model showed poor performance at polluted regions such as Seoul and Suwon where the relative Root Mean Square Error (rRMSE) is over 30%. Predictions by the WRF model alone had a large amount of potential error because of the lack of actual aerosol radiative feedbacks. For the purpose of reducing this error induced by atmospheric particles, i.e., aerosols, the WRF model was coupled with the Community Multiscale Air Quality (CMAQ) model. The coupled system makes it possible to estimate the radiative feedbacks of aerosols on the solar irradiance. As a result, the solar irradiance estimated by the coupled system showed a strong dependence on both the aerosol spatial distributions and the associated optical properties. In the NF (No Feedback) case, which refers to the WRF-only stimulated system without aerosol feedbacks, the GHI was overestimated by $50-200W\;m^{-2}$ compared with OBS derived values at each site. In the YF (Yes Feedback) case, in contrast, which refers to the WRF-CMAQ two-way coupled system, the rRMSE was significantly improved by 3.1-3.7% at Suwon and Seoul where the Particulate Matter (PM) concentrations, specifically, those related to the $PM_{10}$ size fraction, were over $100{\mu}g\;m^{-3}$. Thus, the coupled system showed promise for acquiring more accurate solar irradiance forecasts.

Comparisons of Low Temperature Combustion Characteristics between Diesel and Biodiesel According to EGR control (EGR 제어를 통한 디젤 및 바이오디젤의 저온연소 특성 비교)

  • Lee, Yong-Gyu;Jang, Jae-Hoon;Lee, Sun-Youp;Oh, Seung-Mook
    • Journal of ILASS-Korea
    • /
    • v.16 no.3
    • /
    • pp.119-125
    • /
    • 2011
  • Due to the oxygen contents in biodiesel, application of the fuel to compression ignition engines has significant advantages in terms of lowering PM formation in the combustion chamber. In recent days, considerable studies have been performed to extend the low temperature combustion regime in diesel engines by applying biodiesel fuel. In this work, low temperature combustion characteristics of biodiesel blends in dilution controlled regime were investigated at a fixed engine operating condition in a single cylinder diesel engine, and the comparisons of engine performances and emission characteristics between biodiesel and conventional diesel fuel were carried out. Results show that low temperature combustion can be achieved at $O_2$ concentration of around 7~8% for both biodiesel and diesel fuels. Especially, by use of biodiesel, noticeable reduction (maximum 50% of smoke was observed at low and middle loads compared to conventional diesel fuel. In addition, THC(total hydrocarbon) and CO(Carbon monoxide) emissions decreased by substantial amounts for biodiesel fuel. Results also indicate that even though about 10% loss of engine power as well as 14% increase of fuel consumption rate was observed due to lower LHV(lower heating value) of biodiesel, thermal efficiencies for biodiesel fuel were slightly elevated because of power recovery phenomenon.

Analysis of statistical models on temperature at the Seosan city in Korea (충청남도 서산시 기온의 통계적 모형 연구)

  • Lee, Hoonja
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1293-1300
    • /
    • 2014
  • The temperature data influences on various policies of the country. In this article, the autoregressive error (ARE) model has been considered for analyzing the monthly and seasonal temperature data at the northern part of the Chungcheong Namdo, Seosan monitoring site in Korea. In the ARE model, five meteorological variables, four greenhouse gas variables and five pollution variables are used as the explanatory variables for the temperature data set. The five meteorological variables are wind speed, rainfall, radiation, amount of cloud, and relative humidity. The four greenhouse gas variables are carbon dioxide ($CO_2$), methane ($CH_4$), nitrous oxide ($N_2O$), and chlorofluorocarbon ($CFC_{11}$). And the five air pollution explanatory variables are particulate matter ($PM_{10}$), sulfur dioxide ($SO_2$), nitrogen dioxide ($NO_2$), ozone ($O_3$), and carbon monoxide (CO). The result showed that the monthly ARE model explained about 39-63% for describing the temperature. However, the ARE model will be expected better when we add the more explanatory variables in the model.

The Effects of Engine Speed and Load of the Partial Premixed Diesel Compressed Ignition Engine Applied with the Split Injection Method on Exhaust Gas and IMEP Characteristics (2단 분사방식을 적용한 부분 예혼합 디젤 압축착화 연소 엔진의 회전속도 및 부하 변화가 배출 가스 및 IMEP특성에 미치는 영향)

  • Kang, Jeong-Ho;Lee, Sung-Man;Chung, Jae-Woo;Kang, Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.162-170
    • /
    • 2007
  • Currently, due to the serious world-wide air pollution by substances emitted from vehicles, emission control is enforced more firmly and it is expected that the regulation requirements for emission will become more severe. Anew concept combustion technology that can reduce the NOx and PM in relation to combustion is urgently required. Due to such social requirement, technologically advanced countries are making efforts to develop an environment-friendly vehicle engine at the nation-wide level in order to respond to the reinforced emission control. As a core combustion technology among new combustion technologies for the next generation engine, the homogeneous charge compression ignition (HCCI) is expanding its application range by adopting multiple combustion mode, catalyst, direct fuel injection and partially premixed combustion. This study used a 2-staged injection method in order to apply the HCCI combustion method without significantly altering engine specifications in the aspect of multiple combustion mode and practicality by referring to the results of studies on the HCCI engine. And it is investigated that the effects of the engine rpm and load(or A/F) to emission characteristics.

Major factors determining the size distributions of atmospheric water-soluble aerosol particles at an urban site during winter (겨울철 도시지역 대기 수용성 에어로졸 입자의 크기 분포를 결정하는 주요 인자)

  • Park, Seungshik
    • Particle and aerosol research
    • /
    • v.17 no.3
    • /
    • pp.43-54
    • /
    • 2021
  • Size distributions of atmospheric particulate matter (PM) and its water-soluble organic and inorganic components were measured between January and February 2021 at an urban site in Gwangju in order to identify the major factors that determine their size distributions. Their size distributions during the study period were mainly divided into two groups. In the first group, PM, NO3-, SO42-, NH4+ and water-soluble organic carbon (WSOC) exhibited bi-modal size distributions with a dominant condensation mode at a particle size of 0.32 ㎛. This group was dominated by local production of secondary water-soluble components under atmospheric stagnation and low relative humidity (RH) conditions, rather than long-range transportation of aerosol particles from China. On the other hand, in the second group, they showed tri-modal size distributions with a very pronounced droplet mode at a diameter of 1.0 ㎛. These size distributions were attributable to the local generation and accumulation of secondary aerosol particles under atmospheric conditions such as atmospheric stagnation and high RH, and an increase in the influx of atmospheric aerosol particles by long-distance transportation abroad. Contributions of droplet mode NO3-, SO42-, NH4+ and WSOC to fine particles in the second group were significantly higher than those in the first group period. However, their condensation mode contributions were about two-fold higher in the first group than in the second group. The significant difference in the size distribution of the accumulation mode of the WSOC and secondary ionic components between the two groups was due to the influx of aerosol particles with a long residence time by long-distance transport from China and local weather conditions (e.g., RH).

Prediction Model Design by Concentration Type for Improving PM10 Prediction Performance (PM10 예측 성능 향상을 위한 농도별 예측 모델 설계)

  • Kyoung-Woo Cho;Yong-jin Jung;Chang-Heon Oh
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.576-581
    • /
    • 2021
  • Compared to a low concentration, a high concentration clearly entails limitations in terms of predictive performance owing to differences in its frequency and environment of occurrence. To resolve this problem, in this study, an artificial intelligence neural network algorithm was used to classify low and high concentrations; furthermore, two prediction models trained using the characteristics of the classified concentration types were used for prediction. To this end, we constructed training datasets using weather and air pollutant data collected over a decade in the Cheonan region. We designed a DNN-based classification model to classify low and high concentrations; further, we designed low- and high-concentration prediction models to reflect characteristics by concentration type based on the low and high concentrations classified through the classification model. According to the results of the performance assessment of the prediction model by concentration type, the low- and high-concentration prediction accuracies were 90.38% and 96.37%, respectively.

Testing of Agricultural Tractor Engine using Animal-fats Biodiesel as Fuel

  • Kim, Youngjung;Lee, Siyoung;Kim, Jonggoo;Kang, Donghyeon;Choi, Honggi
    • Journal of Biosystems Engineering
    • /
    • v.38 no.3
    • /
    • pp.208-214
    • /
    • 2013
  • Purpose: Performances of a tractor diesel engine fueled by three different animal fats biodiesels were evaluated comparing with light oil tractor in terms of power, fuel consumption rate, exhaust gases, particulate matter amount and field work capacity. Methods: Animal fats based on pig biodiesel were manufactured manually and tested for its engine performance in the tractor diesel engine and fuel adoptability in the field works. Four different fuels, three different content of biodiesel (BD20, BD50, BD100) and light oil, were prepared and tested in the four strokes diesel engine. Power output, fuel consumption rate and exhaust gases of the four fuels in the diesel engine were compared and discussed. Results: Power output of light oil engine was the greatest showing 5.3% difference between light oil and BD100, but 0.37% better power than BD20 engine power. Less exhaust gases of $CO_2$, CO, $NO_X$ and THC were produced from animal fats biodiesel than light oil, which confirmed that biodiesel is environmental friendly fuel. For fuel adoptability in the tractor, biodiesel engine tractor showed its fuel competitiveness comparing with light oil for tractor works in the faddy field. Conclusions: With four different fuel types of animal-fats biodiesel, performances of a four cylinder diesel engine for tractor were evaluated in terms of power, exhaust gases, particulate matters (PM) and field work capacity. No significant differences observed in the engine performances including power output and exhaust gases emission rate. No significant power difference observed between the various fuels including light oil on the engine running, however, amounts of noxious exhaust gases including $CO_2$ and $NO_X$ decreased as biodiesel content increased in the fuels. Field performances of animal-fats biodiesel tractor were investigated by conducting plowing and rotary operation in the field. Tilling and rotary performance of light oil tractor and BD20 tractor in the field were compared, in which about 10% travelling speed difference on both operations were monitored that showed light oil tractor was superior to BD20 tractor by 10%. Animal-fats can be an alternative fuel source replacing light oil for agricultural machinery and an environmental friendly fuel to nature.

An Evaluation and Management Strategy of Environmental Zone for Improving Air Quality in the Seoul Metropolitan Area (수도권 도심 대기질 개선을 위한 환경지역의 운영전략 및 평가에 관한 연구)

  • Choi, Kee Choo;Lee, Kyu Jin;Ahn, Seong Chae;Shin, Kang Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6D
    • /
    • pp.693-702
    • /
    • 2009
  • In the Seoul metropolitan area (SMA), transportation sector is the largest source of air pollutant emissions. Of the total amount of air pollutant emissions in the SMA, about 52% of the particulate matter emissions and 59% of the nitrogen oxide emissions are from superannuated heavy diesel vehicles. To lessen the air pollutant emissions from superannuated heavy vehicles in the SMA, this study devised several strategies for operating Environmental Zone (EZ) program, which requires superannuated heavy diesel vehicles to install reduction equipments as well as restricts them entering part of the SMA, and evaluated the effects of different strategies on air pollution in the SMA. By using the Korean traffic statistics, an evaluation has been made of six EZ scenarios, which were devised by different target areas and vehicles. The results showed that the EZ program with retrofitting a DPF (Diesel Particulate Filter) equipment to 7-year-old heavy diesel vehicles and early scrapping of pre-1998 heavy diesel vehicles is the most efficient alternative in terms of air pollution reduction. In addition, the results showed that the magnitude of air pollution reduction increases when implementing the EZ program to all entering superannuated heavy diesel vehicles to the SMA rather than registered ones in the SMA.