• Title/Summary/Keyword: PM(particulate matter)

Search Result 820, Processing Time 0.028 seconds

Studies on Reforming Gas Assisted Regeneration of Multi-channel Catalyzed DPF (합성가스(Reforming gas)를 이용한 멀티채널 CDPF의 재생 특성 연구)

  • Choi, Kwang-Chun;Chung, Jin-Hwa;Song, Soon-Ho;Chun, Kwang-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.138-145
    • /
    • 2011
  • Diesel particulate filter (DPF) systems are being used to reduce the particulate matter emission of diesel vehicles. The DPF should be regenerated after certain driving hours or distance to eliminate soot in the filter. The most widely used method is active regeneration with oxygen at $550{\sim}650^{\circ}C$. Syngas (synthetic gas) can be used to lower the regeneration temperature of Catalyzed DPF (CDPF). The syngas is formed by fuel reforming process of CPOx (Catalytic Partial Oxidation) at specific engine condition (1500rpm, 2bar) using 1wt.% $Rh/CeO_2-ZrO_2$ catalyst. The oxidation characteristics of PM with syngas supplied to filter were studied using partial flow system that can control temperature and flow rate independently. The filter is coated with washcoat loading of $25g/ft^3$ $Pt/Al_2O_3-CeO_2$, and multi-channel CDPF (MC-CDPF) was used. The filter regeneration experiments were performed to investigate the effect of syngas exothermic reaction on soot oxidation in the filter. For this purpose, before oxidation experiment, PM was collected about 8g/L to the filter at engine condition of 1500rpm, bmep 8bar and flow temperature of $200^{\circ}C$ Various conditions of temperature and concentration of syngas were used for the tests. Regeneration of filter started at 2% $H_2$ and CO concentration respectively and inlet temperature of $260^{\circ}C$. Filter Regeneration occurs more actively as the syngas concentration becomes higher.

Perturbation of Background Atmospheric Black Carbon/PM1 Ratio during Firecracker Bursting Episode

  • Majumdar, Deepanjan;Gavane, Ashok Gangadhar
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.322-329
    • /
    • 2017
  • Perturbation in ambient particulate matter ($PM_1$, $PM_{2.5}$, $PM_{10}$) and black carbon (BC) concentrations was studied during a firecracker bursting episode in Diwali (Festival of Lights) celebrations in Nagpur, India. Firecracker bursting resulted in greater escalation in fine particulates over coarse particulates while $PM_{2.5}$ was found to be dominated by $PM_1$ concentration. On the Diwali day, daily mean concentration of $PM_{2.5}$ and $PM_{10}$ exceeded Indian National Ambient Air Quality Standards by over 1.8 and 1.5 times, respectively, while daily mean BC concentration on the same day was almost two times higher than the previous day. The BC/$PM_1$ ratio reduced remarkably from about 0.26 recorded before fire-cracker bursting activity to about 0.09 during fire-cracker bursting on Diwali night in spite of simultaneous escalation in ambient BC concentration. Such aberration in BC/$PM_1$ was evidently a result of much higher escalation in $PM_1$ than BC in ambient air during firecracker bursting. The study highlighted strong perturbations in ambient $PM_1$, $PM_{2.5}$, $PM_{10}$ concentrations and BC/$PM_1$ during the firecracker bursting episode. Altered atmospheric BC/$PM_1$ ratios could serve as indicators of firecracker-polluted air and similar BC/$PM_1$ ratios in local and regional air masses might be used as diagnostic ratios for firecracker smoke.

Analysis of Meteorological Factors when Fine Particulate Matters Deteriorate in Urban Areas of Jeju Special Self-Governing Province (제주특별자치도 도시지역 미세먼지 악화 시 기상요소 분석)

  • Sin, Jihwan;Jo, Sangman;Park, Sookuk
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.1
    • /
    • pp.36-58
    • /
    • 2022
  • In this study, the weather conditions corresponding to the increase in the environmental concentration of fine dust (PM10) and ultrafine dust (PM2.5) from 2001 to 2019 in Jeju and Seogwipo cities were analyzed. The increase in the levels of PM10 and PM2.5 was observed in the order: spring > winter > autumn > summer. In both cities, PM10 and PM2.5 levels increased more frequently during the day in spring and summer and at night in autumn and winter, with PM2.5 showing a greater increase in concentration than PM10. The air temperature and wind speed corresponding with increased levels of PM10 were higher than their respective seasonal averages in spring and winter, but lower in summer and autumn. Relative humidity was lower than the seasonal average during all seasons. The air temperature variation corresponding with increased levels of PM2.5 showed the same seasonal trend as that observed for PM10. The relative humidity was higher than the respective seasonal averages in spring and summer, and lower in winter. The wind speed was lower than the seasonal average in both the cities. When the PM10 and PM2.5 levels increased, the wind direction was from the north and the west during the day and varied according to the season at night. The rate of the increase in the PM10 concentration was the highest in both cities at the wind speed of 1.6 - 3.4 ms-1 during the day and night except during night in the summer. The highest concentration of PM2.5 was observed with the wind speed range of 1.6 - 3.4 ms-1 in Jeju, and 0.3 - 1.6 ms-1 in Seogwipo. The results of this study applied to urban and landscape planning will aid in the formulation of strategies to reduce the adverse effects of fine particular matter.

Effect of Daily Mean PM10 and PM2.5 on Distribution of Excessive Mortality Risks from Respiratory and Cardiovascular Diseases in Busan (부산지역 PM10, PM2.5 일평균에 의한 호흡기 및 심혈관질환 초과위험도 분포)

  • Do, Woo-gon;Jung, Woo-sik
    • Journal of Environmental Science International
    • /
    • v.30 no.7
    • /
    • pp.573-584
    • /
    • 2021
  • To analyze the effects of PM10 and PM2.5 on daily mortality cases, the relations of death counts from natural causes, respiratory diseases, and cardiovascular diseases with PM10 and PM2.5 concentrations were applied to the generalized additive model (GAM) in this study. From the coefficients of the GAM model, the excessive mortality risks due to an increase of 10 ㎍/m3 in daily mean PM10 and PM2.5 for each cause were calculated. The excessive risks of deaths from natural causes, respiratory diseases, and cardiovascular diseases were 0.64%, 1.69%, and 1.16%, respectively, owing to PM10 increase and 0.42%, 2.80%, and 0.91%, respectively, owing to PM2.5 increase. Our result showed that particulate matter posed a greater risk of death from respiratory diseases and is consistent with the cases in Europe and China. The regional distribution of excessive risk of death is 0.24%-0.81%, 0.34%-2.6%, and 0.62%-1.94% from natural causes, respiratory diseases, and cardiovascular diseases, respectively, owing to PM10 increase, and 0.14%-1.02%, 1.07%-3.92%, and 0.22%-1.73% from natural causes, respiratory diseases, and cardiovascular diseases, respectively, owing to PM2.5 increase. Our results represented a different aspect from the regional concentration distributions. Thus, we saw that the concentration distributions of air pollutants differ from the affected areas and identified the need for a policy to reduce damage rather than reduce concentrations.

National Management Measures for Reducing Air Pollutant Emissions from Vessels Focusing on KCG Services (선박 대기오염물질 배출 현황 및 저감을 위한 국가 관리 대책 연구: 해양경찰 업무를 중심으로)

  • Lee, Seung-Hwan;Kang, Byoung-Yong;Jeong, Bong-Hun;Gu, Ja-Yeong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.2
    • /
    • pp.163-174
    • /
    • 2020
  • Particulate matter levels are rapidly increasing daily, and this can affect human health. Therefore, air pollutant emissions from sea vessels require management. This study evaluates the status of air pollutants, focusing on air pollutant emissions from the vessels of the Korea Coast Guard (KCG), and proposes national management measures to reduce emissions. According to a report recently released (2018) by the National Institute of Environmental Research (NIER), emissions from vessels constituted 6.4 % of the total domestic emissions, including 13.1 % NOx, 10.9 % SOx, and 9.6 % particulate matter (PM10/PM2.5). Among the rates of pollutant emission from vessels, the emission rates of domestic and overseas cargo vessels were the highest (50.6 %); the ratio of fishing boats was 42.6 %. With respect to jurisdictional sea area, 44.1 % of the emissions are from the south sea, including the Busan and Ulsan ports, and 24.8 % of the emissions are from the west sea, including the Gwangyang and Yeosu ports. The KCG inspects boarding lines to manage emission conditions and regulate air pollutant emissions, but it takes time and effort to operate various discharge devices and measure fuel oil standards. In addition, owing to busy ship schedules, inspection documents are limited in terms of management. Therefore, to reduce the air pollutant emissions of such vessels, regulations will be strengthened to check for air pollutants, and a monitoring system based on actual field data using KCG patrol ships will be established, for each sea area, to manage the emissions of such vessels. Furthermore, there is a need for technological development and institutional support for the introduction of environmentally friendly vessels.

Calibration of Portable Particulate Mattere-Monitoring Device using Web Query and Machine Learning

  • Loh, Byoung Gook;Choi, Gi Heung
    • Safety and Health at Work
    • /
    • v.10 no.4
    • /
    • pp.452-460
    • /
    • 2019
  • Background: Monitoring and control of PM2.5 are being recognized as key to address health issues attributed to PM2.5. Availability of low-cost PM2.5 sensors made it possible to introduce a number of portable PM2.5 monitors based on light scattering to the consumer market at an affordable price. Accuracy of light scatteringe-based PM2.5 monitors significantly depends on the method of calibration. Static calibration curve is used as the most popular calibration method for low-cost PM2.5 sensors particularly because of ease of application. Drawback in this approach is, however, the lack of accuracy. Methods: This study discussed the calibration of a low-cost PM2.5-monitoring device (PMD) to improve the accuracy and reliability for practical use. The proposed method is based on construction of the PM2.5 sensor network using Message Queuing Telemetry Transport (MQTT) protocol and web query of reference measurement data available at government-authorized PM monitoring station (GAMS) in the republic of Korea. Four machine learning (ML) algorithms such as support vector machine, k-nearest neighbors, random forest, and extreme gradient boosting were used as regression models to calibrate the PMD measurements of PM2.5. Performance of each ML algorithm was evaluated using stratified K-fold cross-validation, and a linear regression model was used as a reference. Results: Based on the performance of ML algorithms used, regression of the output of the PMD to PM2.5 concentrations data available from the GAMS through web query was effective. The extreme gradient boosting algorithm showed the best performance with a mean coefficient of determination (R2) of 0.78 and standard error of 5.0 ㎍/㎥, corresponding to 8% increase in R2 and 12% decrease in root mean square error in comparison with the linear regression model. Minimum 100 hours of calibration period was found required to calibrate the PMD to its full capacity. Calibration method proposed poses a limitation on the location of the PMD being in the vicinity of the GAMS. As the number of the PMD participating in the sensor network increases, however, calibrated PMDs can be used as reference devices to nearby PMDs that require calibration, forming a calibration chain through MQTT protocol. Conclusions: Calibration of a low-cost PMD, which is based on construction of PM2.5 sensor network using MQTT protocol and web query of reference measurement data available at a GAMS, significantly improves the accuracy and reliability of a PMD, thereby making practical use of the low-cost PMD possible.

The Concentrations of TSp, PM10 and Heavy Metal at Underground parking Lots of Public Facilities in Taegu City (대구시 공중이용시설 지하주차장의 총부유먼지, 호흡성먼지 및 중금속 농도)

  • 이현주;정재열;이종영;송희봉;홍성철
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.2
    • /
    • pp.22-29
    • /
    • 2000
  • This study was performed to investigate the concentrations of TSP, PM10 and heavy metals(Pb, Cd,Hg, Ni, Zn) of underground parking lots in Taegu city. The samples were collected from 3 department stores and 1 central park in the winter and the summer, 1997. The samples of 3 department stores were divided into sale period and non-sale period in the winter and the summer. The concentrations of TSP and PM10 were 109.6±1.5㎍/㎥ and 93.3±1.5㎍/㎥. In TSP, the zinc was the highest level, 287.16±1.5ng/㎥ and the cadmium was the lowest, 2.4±2.1ng/㎥ and in PM10, the zinc was the highest level, 193.6±1.5ng/㎥ and the cadmium was the lowest, 0.6±3.9ng/㎥. The correlation coefficient between the concentration of TSP and PM10 was 0.982(p<0.05). The correlation coefficients of corresponding heavy metal in TSP and PM10 were 0.863 for lead, 0.617 for mercury, 0.890 for nickel and 0.850 for zinc(p<0.05). The concentrations of TSP, PM10 and cadmium of PM10 in the winter were higher than those of the summer. However, the concentration of Hg of PM10 in the summer was higher than that of the winter. The concentrations of TSP and PM10 in sale period was higher than those of non-sale period and the concentrations of heavy metal in TSP and PM10 were not significantly different between sale and non-sale period. The proportions of PM10 to TSP were above 60% in dust, lead, nickel, and zinc and less than 40% in cadmium and mercury. The concentrations of TSP, PM10 and heavy metal in the underground parking lots were comparatively lower than those of general atmosphere. However, this kind of research to PM10 in the underground parking lots must be continued because it is very important particulate matter that affects human beng's health.

  • PDF

The Study on the Emission Characteristics of Particulate Matters from Meat Cooking (고기구이에서 발생하는 입자상물질의 배출특성에 관한 연구)

  • Bong, C.K.;Park, S.J.;Park, S.K.;Kim, J.H.;Hwang, Y.H.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.3
    • /
    • pp.196-201
    • /
    • 2011
  • Emission from meat cooking may contribute to the concentration of the Particulate Matters(PM) in the city. This study is to investigate the particle size and the emission characteristics of particulate matters from pork and beef cooking. The chamber was installed for sampling of PM generated from pork belly and beef sirloin cooking including seasoned ones. Cascade Impactor and Portable Aerosol Monitor (PAM) were used to analyse the particle size distribution. At the result of the Cascade Impactor sampling, particulate matters from the pork cooking was higher than that of beef. The gravimetric concentration of PM according to the size was highest at the range of $1.95{\sim}3.2{\mu}m$ and the gravimetric concentration of PM from the non-seasoned meat was higher than that of the seasoned one. The emission factors from pork, pork seasoned, beef and beef seasoned were 1.36 g/kg, 1.03 g/kg, 1.23 g/kg, 0.92 g/kg respectively. To see the result of PAM sampling, the ranges of $1.6{\sim}2.5{\mu}m$ and $2.5{\sim}3.5{\mu}m$ were reveled as highest. The ration of $PM_{2.5}/PM_{10}$ from pork and beef was 0.56~0.58. The emission factors from pork, pork seasoned, beef and beef seasoned measured by PAM were revealed as 3.37 g/kg, 2.76 g/kg, 2.93 g/kg, 2.77 g/kg respectively.

A Comparison Study of Aerosol Samplers for PM10 Mass Concentration Measurement (PM10 질량농도 측정을 위한 시료채취기의 비교 연구)

  • Park, Ju-Myon;Koo, Ja-Kon;Jeong, Tae-Young;Kwon, Dong-Myung;Yoo, Jong-Ik;Seo, Yong-Chil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.153-160
    • /
    • 2009
  • A PM10 (aerodynamic diameter${\leq}$10 ${\mu}m$) sampler is used to quantify the potential human exposure to suspended particulate matter (PM) and to comply with the governmental regulation. This study was conducted to compare and evaluate the same PM10 cutpoint and different slopes between United States Environmental Protection Agency (USEPA) PM10 sampling criterion and American Conference of Governmental Industrial Hygienists/$Comit\acute{e}$ $Europ\acute{e}en$ de Normalization/International Organization for Standardization thoracic PM10 sampling criterion through theory and experiment. Four PM10 samplers according to the USEPA criterion and one RespiCon sampler in accordance with the thoracic PM10 criterion were used in the present study. In addition, one DustTrak monitor was used to measure real time PM10 mass concentrations. All six aerosol samplers were tested in a PM generation chamber using polydisperse fly ash. Theoretical mass concentrations were calculated by applying the measured particle size distribution characteristics (geometric mean = 6.6 ${\mu}m$, geometric standard deviation = 1.9) of fly ash to each sampling criterion. The measured mass concentrations through a chamber experiment were consistent with theoretical mass concentrations in that a RespiCon sampler with the thoracic PM10 criterion collected less PM than a PM10 sampler with the USEPA criterion. The overall chamber experiment results indicated, when a PM10 sampler was used as a reference sampler, that (1) a RespiCon sampler had a normalizing factor of 1.6, meaning that this sampler underestimated an average 60% of PM10 mass sampled from a PM10 sampler, and (2) a DustTrak real-time monitor using a PM10 inlet had a calibration factor of 2.1.

Monitoring of Particulate Matter and Analysis of Black Carbon and Some Particle Containing Toxic Trace in the City of Yaoundé, Cameroon

  • Tchuente, Siaka Y.F.;Saidou, Saidou;Yakum, N.Y.;Kenmoe, N.X.;Abdourahimi, Abdourahimi
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.2
    • /
    • pp.120-128
    • /
    • 2013
  • The concentration and composition of particulate matter (PM) in the atmosphere can directly reflect the environmental pollution. The atmospheric pollution in some Cameroonian cities is increasing with the industrial development and urbanization. Air pollution is inherently complex, containing PM of varied size and composition. This PM exists as a dynamic cloud interacting with sunlight and is modified by the meteorology. The reflectometer and the EDXRF spectrometry are applied to determine the concentration of some specific elements at four sites in the city of Yaound$\acute{e}$. The particular aim of the present work is to put in place data base on air pollution in urban area and elaborate regulations on the emissions issued to industrial and vehicle activities. This study provides an overview of the concentration of black carbon and some specific elements in the air, which have impacts on human health. The measurement was done by distinguishing the size of particle. So that, the particle with aerodynamic diameter between $2.5-10{\mu}m$ (so-called coarse particle) and aerodynamic diameter < $2.5{\mu}m$ (so-called fine particle) were considered to obtain more information about levels of the inhalable fraction of the location. The results obtained in four locations of the city of Yaound$\acute{e}$ show that the black carbon concentration is very considerable, the element sulfur is a major pollutant and the concentration of fine particle is very greater. The results obtained of fine and coarse filters range from $5-17{\mu}g/m^3$ and $10-18{\mu}g/m^3$ for the black carbon. S, Cu, Zn, Pb, Cd, As, Se and Hg are the specific findings of this work. The pollutants with a greater concentration are S, Pb, and Zn. These later seem to be non-uniformly, non-regular in some location and high compared to other countries. This work allows us to make a potential relation between pollutants and emission sources. In this framework, some suggestions have been proposed to reduce emissions for an improvement of the air quality in the environment and thus, the one of the city of Yaound$\acute{e}$.