• Title/Summary/Keyword: PM(Permanent Magnet)

Search Result 403, Processing Time 0.033 seconds

A Characteristics Analysis of a Hybrid PM Step Motor by Varying Stator Coil Inductances (Hybrid PM 스텝모터의 고정자 코일의 인덕턴스 변화에 따른 특성해석)

  • Oh, Chul-Soo;Seo, Young-Taek
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.51-54
    • /
    • 1991
  • The effect of inductance for optimal design of Hybrid permanent magnet step motor is presented on this paper. A pull-out torque of Hybrid permanent magnet step motor is measured and calculated by varying stator coil inductances, and power consumption of the step motor also is calculated and compared to the measured value. The relation of developed torque to parer consumption by the changing of magnetomotive force magnitude in a rotor permanent magnet is studied, which is the essence of the step motor design.

  • PDF

Permanent Magnet Optimization for Reduction of Cogging Torque of BLDC Motor using Response Surface Methodology (반응표면법을 이용한 코깅 토크 저감을 위한 BLDC 모터의 자석 최적설계)

  • Lee, Jang-Won;Shim, Ho-Kyung;Wang, Se-Myung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.202-205
    • /
    • 2008
  • This paper presents an optimization of permanent magnet (PM) in a brushless dc (BLDC) motor using the response surface methodology (RSM). Size and angle of the PM are optimized to minimize the cogging torque, while reducing the magnitude of harmonic at a dominant frequency and maintaining the operating torque. A fitted RS model is constructed by verifying the high reliability of the total variation and the variation of estimated error. The optimized design is validated by carrying out the reanalysis and comparing to the initial model using the nonlinear transient finite element analysis.

  • PDF

A Study on the Cogging Torque Reduction in a Novel Axial Flux Permanent Magnet BLDC Motor (축방향 자속형 영구자석 BLDC 전동기의 코깅 토크 저감에 관한 연구)

  • Jo, Won-Young;Lee, In-Jae;Koo, Dae-Hyun;Chun, Yon-Do;Cho, Yun-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.9
    • /
    • pp.437-442
    • /
    • 2006
  • Cogging torque, the primary ripple component in the torque generated by permanent magnet (PM) motors, is due to the slotting on the stator or rotor. This article shows the reduction of cogging torque in a novel axial flux permanent magnet (AFPM) motor through the various design schemes. 3D finite element method is used for the exact magnetic field analysis. The effects of slot shapes and skewing of slot on the cogging torque and the average torque have been investigated in detail.

Characteristic Analysis of Permanent Magnet Linear Synchronous Machine according to PM Overhang (선형 영구자석 기기의 오버행에 따른 특성해석)

  • Koo, Min-Mo;Choi, Jang-Young;Shin, Hyeon-Jae;Hong, Keyyong
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.833-834
    • /
    • 2015
  • For the design of a permanent magnet linear synchronous machine with slotless stator structure, this paper addresses a three-dimensional (3D) analytical approach for consideration of end effects. In contrast, analytical method can derive solutions in substantially shorter times with high reliability. Therefore, we derive accurate analytical solutions to dramatically reduce the time need for analysis. In addition, we performed characteristic analysis of permanent magnet linear synchronous machine (PMSLM) according to PM overhang length.

  • PDF

Water-Cooled Direct Drive Permanent Magnet Motor Design in Consideration of its Efficiency and Structural Strength

  • Lee, Ji-Young;Hong, Do-Kwan;Woo, Byung-Chul;Kim, Kyu-Seob;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.125-129
    • /
    • 2013
  • This paper deals with a water-cooled direct drive permanent magnet (DD-PM) motor design for an injection-molding application. In order to meet the requirements for the target application and consider the practical problems of the manufacturing industry, the DD-PM motor is designed in consideration of efficiency and structural strength with many constraints. The performances of the designed motor are estimated not only by magnetic field analysis, but also by thermal and structural analysis. The design and analysis results are presented with experiment results.

Effect of Pole to Slot Ratio on Cogging Torque and EMF Waveform in Permanent Magnet Motor with Fractional-Slot (분수슬롯을 가진 영구자석 전동기에서 극당 슬롯 비율이 코깅토크와 역기전력에 미치는 영향)

  • Lee, Kab-Jae;Lee, Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.9
    • /
    • pp.454-459
    • /
    • 2003
  • Conventional integral-slot design in permanent magnet(PM) motor tends to have a high cogging torque and large end turns, which contribute to copper losses. The fractional-slot design is effective compared to integral-slot design in the cogging torque and electromotive force(EMF) waveform. The effectiveness of fractional slot can be maximized by selecting optimal pole to slot ratio. This paper presents the effect of pole to slot ratio on the cogging torque and EMF waveform in the PM motor with fractional-slot. The effectiveness of the proposed designs has been confirmed by comparing waveform of EMF. cogging torque and torque ripple between conventional and new models.

Design for the Improvement of Force Characteristic in Controlled-PM LSM Maglev Carrier by FEM (유한요소법을 이용한 제어 영구자석형 선형동기전도기의 추력특성 개선을 위한 설계)

  • Chun, Yon-Do;Lee, Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.5
    • /
    • pp.214-220
    • /
    • 2001
  • This paper presents the design schemes for the improvement of force characteristics in a controlled permanent magnet liner synchronous motor (Controlled-PM LSM). The dependence of motor performance on the various design schemes, such as the slot shapes, the magnetization patterns of permanent magnet and the skewing, has been investigated in detail by using finite element method (FEM). The analysis results are verified by the experiment that is performed by a testing machine. From this study, it is known that the skewing of the magnet is the most efficient method in the aspects of detent force reduction and higher force density.

  • PDF

Torque Characteristics Analysis of Interior Permanent Magnet Synchronous Motor according to Pole Arc Ratio (극호비 변화에 따른 영구자석 매입형 동기전동기의 토크 특성 해석)

  • Lee K. J.;Kim K. C.;Lee J. I.;Kwon J. L.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.758-760
    • /
    • 2004
  • The torque characteristics of permanent magnet(PM) motor is varied according to magnet width. In this paper, the design method of magnet and magnetic circuit is proposed in order to improve the torque of Interior Permanent Magnet Synchronous Motor(IPMSM). This paper presents the effects of pole arc ratio and salient pole ratio on the torque and torque ripple in the IPMSM with concentrated winding.

  • PDF

Alternative Design of 3MW Offshore PM Synchronous Generator (해상용 3 MW 영구자석형 동기발전기의 대안설계)

  • Kim, Dong-Eon;Lee, Hong-Gi;Han, Hong-Sik;Jung, Yung-Gyu;Suh, Hyung-Suck;Chung, Chin-Wha;Lim, Min-Soo;Kwak, Seung-Keun;Oh, Man-Soo;Choi, June-Hyuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.274-277
    • /
    • 2008
  • Pohang Wind Energy Research Center (PoWER-C) is developing a 3 MW Radial Flux Permanent Magnet (RFPM) Synchronous Generator for offshore Wind Energy Converter (WEC). The blade rotor rpm is 15.7 and the gear ratio is set to be 92.93. The nominal generator rpm at the rated load is about 1459. Baseline design with surface mounted PM magnets are completed. However, there is some concern about the excessive eddy current heating in the magnets. To alleviate this problem, another design with embedded magnet is going on. With embedded magnets, the generator length should be increased to compensate the increased flux leakage. But the field fluctuation in the magnets due to the slots are greatly reduced. This means less eddy currents and lower magnet operating temperature. In this report, engineering efforts for embedded rotor is presented.

  • PDF

Permanent Magnet Overhang Effect in Permanent Magnetic Actuator Using 3 Dimension Equivalent Magnetic Circuit network Method

  • Lim Seung-Bin;Kwon Ho;Kwon Sam-Young;Choi Seung-kil;Baek Soo-Hyun;Lee Ju
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.123-128
    • /
    • 2005
  • This paper presents an analysis of the permanent magnet overhang effect for the permanent magnetic actuator. Generally, the overhang is often used to increase the force density in permanent magnet machineries. The overhang is particularly profitable in reducing the volume after increasing the force density per volume when using the overhang effect of the permanent magnet. Therefore, the 3D Equivalent Magnetic Circuit Network Method (3D EMCN) has been used in this paper. According to the plunger position, the flux distribution per overhang length and the holding force are quantitatively compared. Furthermore, an appropriate length of the overhang has been proposed. To confirm the accuracy of the analysis method, the results of 2D FEM and 3D FEM are compared for the basic model.