• Title/Summary/Keyword: PLSR

Search Result 101, Processing Time 0.028 seconds

Net Analyte Signal-based Quantitative Determination of Fusel Oil in Korean Alcoholic Beverage Using FT-NIR Spectroscopy

  • Lohumi, Santosh;Kandpal, Lalit Mohan;Seo, Young Wook;Cho, Byoung Kwan
    • Journal of Biosystems Engineering
    • /
    • v.41 no.3
    • /
    • pp.208-220
    • /
    • 2016
  • Purpose: Fusel oil is a potent volatile aroma compound found in many alcoholic beverages. At low concentrations, it makes an essential contribution to the flavor and aroma of fermented alcoholic beverages, while at high concentrations, it induced an off-flavor and is thought to cause undesirable side effects. In this work, we introduce Fourier transform near-infrared (FT-NIR) spectroscopy as a rapid and nondestructive technique for the quantitative determination of fusel oil in the Korean alcoholic beverage "soju". Methods: FT-NIR transmittance spectra in the 1000-2500 nm region were collected for 120 soju samples with fusel oil concentrations ranging from 0 to 1400 ppm. The calibration and validation data sets were designed using data from 75 and 45 samples, respectively. The net analyte signal (NAS) was used as a preprocessing method before the application of the partial least-square regression (PLSR) and principal component regression (PCR) methods for predicting fusel oil concentration. A novel variable selection method was adopted to determine the most informative spectral variables to minimize the effect of nonmodeled interferences. Finally, the efficiency of the developed technique was evaluated with two different validation sets. Results: The results revealed that the NAS-PLSR model with selected variables ($R^2_{\upsilon}=0.95$, RMSEV = 100ppm) did not outperform the NAS-PCR model (($R^2_{\upsilon}=0.97$, RMSEV = 7 8.9ppm). In addition, the NAS-PCR shows a better recovery for validation set 2 and a lower relative error for validation set 3 than the NAS-PLSR model. Conclusion: The experimental results indicate that the proposed technique could be an alternative to conventional methods for the quantitative determination of fusel oil in alcoholic beverages and has the potential for use in in-line process control.

Differentiation of Beef and Fish Meals in Animal Feeds Using Chemometric Analytic Models

  • Yang, Chun-Chieh;Garrido-Novell, Cristobal;Perez-Marin, Dolores;Guerrero-Ginel, Jose E.;Garrido-Varo, Ana;Cho, Hyunjeong;Kim, Moon S.
    • Journal of Biosystems Engineering
    • /
    • v.40 no.2
    • /
    • pp.153-158
    • /
    • 2015
  • Purpose: The research presented in this paper applied the chemometric analysis to the near-infrared spectral data from line-scanned hyperspectral images of beef and fish meals in animal feeds. The chemometric statistical models were developed to distinguish beef meals from fish ones. Methods: The meal samples of 40 fish meals and 15 beef meals were line-scanned to obtain hyperspectral images. The spectral data were retrieved from each of 3600 pixels in the Region of Interest (ROI) of every sample image. The wavebands spanning 969 nm to 1551 nm (across 176 spectral bands) were selected for chemometric analysis. The partial least squares regression (PLSR) and the principal component analysis (PCA) methods of the chemometric analysis were applied to the model development. The purpose of the models was to correctly classify as many beef pixels as possible while misclassified fish pixels in an acceptable amount. Results: The results showed that the success classification rates were 97.9% for beef samples and 99.4% for fish samples by the PLSR model, and 85.1% for beef samples and 88.2% for fish samples by the PCA model. Conclusion: The chemometric analysis-based PLSR and PCA models for the hyperspectral image analysis could differentiate beef meals from fish ones in animal feeds.

Prediction of moisture contents in green peppers using hyperspectral imaging based on a polarized lighting system

  • Faqeerzada, Mohammad Akbar;Rahman, Anisur;Kim, Geonwoo;Park, Eunsoo;Joshi, Rahul;Lohumi, Santosh;Cho, Byoung-Kwan
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.995-1010
    • /
    • 2020
  • In this study, a multivariate analysis model of partial least square regression (PLSR) was developed to predict the moisture content of green peppers using hyperspectral imaging (HSI). In HSI, illumination is essential for high-quality image acquisition and directly affects the analytical performance of the visible near-infrared hyperspectral imaging (VIS/NIR-HSI) system. When green pepper images were acquired using a direct lighting system, the specular reflection from the surface of the objects and their intensities fluctuated with time. The images include artifacts on the surface of the materials, thereby increasing the variability of data and affecting the obtained accuracy by generating false-positive results. Therefore, images without glare on the surface of the green peppers were created using a polarization filter at the front of the camera lens and by exposing the polarizer sheet at the front of the lighting systems simultaneously. The results obtained from the PLSR analysis yielded a high determination coefficient of 0.89 value. The regression coefficients yielded by the best PLSR model were further developed for moisture content mapping in green peppers based on the selected wavelengths. Accordingly, the polarization filter helped achieve an uniform illumination and the removal of gloss and artifact glare from the green pepper images. These results demonstrate that the HSI technique with a polarized lighting system combined with chemometrics can be effectively used for high-throughput prediction of moisture content and image-based visualization.

Quantitative Descriptive Analysis and Acceptance Test of Low-salted Sauerkraut (fermented cabbage) (저염 Sauerkraut (fermented cabbage)의 정량적 묘사분석 및 기호도 연구)

  • Ji, Hye-In;Kim, Da-Mee
    • Journal of the Korean Society of Food Culture
    • /
    • v.37 no.3
    • /
    • pp.239-247
    • /
    • 2022
  • This study evaluated the sensory characteristics of sauerkraut prepared by adding 0.5, 1.0, 1.5, 2.0, and 2.5% (w/w) sea salt to cabbage. The quantitative descriptive analysis (QDA) and acceptance test of sauerkraut were determined for each salt concentration, and the principal component analysis (PCA) and partial least square regression (PLSR) analysis were performed to confirm the correlation between each factor. Results of the QDA determined 14 descriptive terms; furthermore, brightness and yellowness of appearance and the sour, salty, and bitter flavors differed significantly according to the salt concentration. Results from the PCA explained 22.56% PC1 and 65.34% PC2 of the total variation obtained. Sauerkraut prepared using 0.5, 1.0, and 1.5% sea salt had high brightness, moistness, sour odor, green odor, sour flavor, carbonation, hardness, chewiness, and crispness, whereas sauerkraut prepared with 2.0 and 2.5% sea salt had high yellowness, glossiness, salty flavor, sweet flavor, and bitter flavor. Hierarchical cluster analysis classified the products into two clusters: sauerkraut of 0.5, 1.0, and 1.5%, and sauerkraut of 2.0 and 2.5%. Results of PLSR determined that sauerkraut of 1.0 and 1.5% were the closest to texture, taste, and overall acceptance. We, therefore, conclude that sauerkrauts prepared using 1.0 and 1.5% sea salt have excellent characteristics in appearance, taste, and texture.

Fundamental Investigation of Non-invasive Determination of Alcohol in Blood by Near Infrared Spectrophotometry (근적외선 분광분석법을 이용한 음주측정기술 개발에 관한 연구)

  • Chang, Soo-Hyun;Cho, Chang-Hee;Woo, Young-Ah;Kim, Hyo-Jin;Kim, Young-Man;Lee, Kang-Boong;Kim, Young-Woon;Park, Sung-Woo
    • Analytical Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.375-381
    • /
    • 1999
  • Near infrared spectrophotometry(NIR) was developed as a non-invasive determination of blood alcohol. The first pure alcohol/water samples were prepared with ethanol concentration from 0.01 to 0.1%(w/w). Analysis of the second-derivative data was accomplished with multilinear regression(MLR). The standard error of calibration(SEC) of ethanol in ethanol/water solutions was approximately 0.0039%. The calibration models were established from the blood alcohol spectra by MLR and PLSR analysis. The best calibration was built with the second-derivative spectra of 2266 and 2326 nm by MLR. Second-derivative spectra in the spectral ranges of 1100~1340, 1500~1796 and 2064~2300 nm with four PLSR factors provided the standard error of prediction(SEP) of 0.030%(w/w). These results indicate that NIR may be applied for a fast non-invasive determination of alcohol in the blood.

  • PDF

A Study on Sensory Properties of Backsulgi using Dry Non-Glutinous Rice Flour

  • Park, Young Mi;Yoon, Hye Hyun
    • Culinary science and hospitality research
    • /
    • v.20 no.5
    • /
    • pp.34-42
    • /
    • 2014
  • The study explores the sensory properties of Backsulgi prepared with dry non-glutinous rice flour sweetened with various sweeteners(sugar, honey, oligosaccharide, trehalos, erythritol and accesulfame K). Sensory attributes of Backsulgi were evaluated by quantitative descriptive analysis(QDA), PCA and PLSR. The QDA results revealed that the sample sweetened with trehalose showed highest value in dryness, and samples with accesulfame K, honey and erythriol had relatively high levels in moisture and springiness. Principle component analysis (PCA) results showed 78.89 % of the total variation with PC1 (54.92%) and PC2 (23.98%), respectively. The samples with accesulfame K(AF) and honey, which showed high values in moisture level, springiness and sweet taste, showed similar attributes which led to a positive direction of PC1. The correlation between the sensory attributes and consumer acceptance showed that the most important factors for high consumer acceptance were moistness, springiness, sweet taste and sweet flavor. Overall, the samples with accesulfame K(AF) had the closest position in the PLSR results with highest overall consumer satisfaction.

Nondestructive Determination of Humic Acids in Soils by Near Infrared Reflectance Spectroscopy

  • Seo, Sang-Hyun;Park, Woo-Churl;Cho, Rae-Kwang;Xiaori Han
    • Near Infrared Analysis
    • /
    • v.1 no.1
    • /
    • pp.31-35
    • /
    • 2000
  • Near-infrared reflectance spectroscopy(NIRS) was used to determine the humic acids in soil samples from the fields of different crops and land-use over Youngnam and Honam regions in Korea. An InfraAlyzer 500 scanning spectrophotometer was obtained near infrared relectance spectra of soil at 2-nm intervals from 1100 to 2500nm. Multiple linear regression(MLR) or partial least square regression (PLSR) was used to evaluate a NIRS method for the rapid and nondestructive determination of humic acid, fulvic acid and its total contents in soils. The raw spectral data(log 1/R) can be used for estimating humic acid, fulvic acid and its total contents in soil by MLR procedure between the content of a given constituent and the spectral response of several bands. In which the predicted results for fulvic acid is the best in the constituents. The new spectral data are converted from the raw spectra by PLSR method such as the first derivative of each spectrum can also be used to predict humic acid and fulvic acid of the soil samples. A low SEC, SEP and a high coefficient of correlation in the calibration and validation stages enable selection of the best manipulation. But a simple calibration and prediction method for determining humic acid and fulvic acid should be selected under similar accuracy and precision of prediction. NIRS technique may be an effective method for rapid and nondestructive determination for humic acid, fulvic acid and its total contents in soils.

Glucose Prediction in the Interstitial Fluid Based on Infrared Absorption Spectroscopy Using Multi-component Analysis

  • Kim, Hye-Jeong;Noh, In-Sup;Yoon, Gil-Won
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.279-285
    • /
    • 2009
  • Prediction of glucose concentration in the interstitial fluid (ISF) based on mid-infrared absorption spectroscopy was examined at the glucose fundamental absorption band of 1000 - 1500/cm (10 - 6.67 um) using multi-component analysis. Simulated ISF samples were prepared by including four major ISF components. Sodium lactate had absorption spectra that interfere with those of glucose. The rest NaCl, KCl and $CaCl_2$ did not have any signatures. A preliminary experiment based on Design of Experiment, an optimization method, proved that sodium lactate influenced the prediction accuracy of glucose. For the main experiment, 54 samples were prepared whose glucose and sodium lactate concentration varied independently. A partial least squares regression (PLSR) analysis was used to build calibration models. The prediction accuracy was dependent on spectrum preprocessing methods, and Mean Centering produced the best results. Depending on calibration sample sets whose sodium lactate had different concentration levels, the standard error prediction (SEP) of glucose ranged $17.19{\sim}21.02\;mg/dl$.

Development of Models for the Prediction of Domestic Red Pepper (Capsicum annuum L.) Powder Capsaicinoid Content using Visible and Near-infrared Spectroscopy

  • Lim, Jongguk;Mo, Changyeun;Kim, Giyoung;Kim, Moon S.;Lee, Hoyoung
    • Journal of Biosystems Engineering
    • /
    • v.40 no.1
    • /
    • pp.47-60
    • /
    • 2015
  • Purpose: The purpose of this study was to non-destructively and quickly predict the capsaicinoid content of domestic red pepper powders from various areas of Korea using a pungency measurement system in combination with visible and near-infrared (VNIR) spectroscopic techniques. Methods: The reflectance spectra of 149 red pepper powder samples from 14 areas of Korea were obtained in the wavelength range of 450-950 nm and partial least squares regression (PLSR) models for the prediction of capsaicinoid content were developed using area models. Results: The determination coefficient of validation (RV2), standard error of prediction (SEP), and residual prediction deviation (RPD) for the capsaicinoid content prediction model for the Namyoungyang area were 0.985, ${\pm}2.17mg/100g$, and 7.94, respectively. Conclusions: These results show the possibility of VNIR spectroscopy combined with PLSR models in the non-destructive and facile prediction of capsaicinoid content of red pepper powders from Korea.

A Study of Piping Leadtime Forecast in Offshore Plant’s Outfittings Procurement Management (해양플랜트 의장품 조달관리를 위한 배관 공정 리드타임 예측 모델에 관한 연구)

  • Ham, Dong Kyun;Back, Myung Gi;Park, Jung Goo;Woo, Jong Hun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • In shipbuilding and offshore plant construction, pipe-stools of various types are installed. Moreover, these are many quantities but they must be installed in a successive manner. Due to these characteristics the pipe-stool installation processes easily tends to cause the schedule delays in the overall production processes. In order to reduce delay, the goal of this study is to predicts production’s lead time before manufacturing. Through this predictions it’s expected to reduce total production’s lead time by improving it's process. First of all, we made MLR(Multiple Linear Regression) and PLSR(Partial Least Square Regression) model to predict pipe-spool's lead time and then compared predictability of MLR and PLSR model. If a explanatory variable is added, it will be possible to predict results precisely.