• Title/Summary/Keyword: PLQY

Search Result 4, Processing Time 2.238 seconds

Formation of CH3NH3PbBr3 Perovskite Nanocubes without Surfactant and Their Optical Properties

  • Kirakosyan, Artavazd;Yun, Seokjin;Kim, Deul;Choi, Jihoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.1
    • /
    • pp.79-85
    • /
    • 2018
  • We systematically investigated the optical properties of sub-micron sized methylammonium lead tribromide ($CH_3NH_3PbBr_3$) cubes in the range of 100 to 700 nm, which were prepared by a surfactant-free precipitation method. We found that despite the strong absorbance, their photoluminescence quantum yield (PLQY) is very low as 0.009~0.011 % for whole range of sizes. Surfactant-free synthesis approach results in nanocubes that has no surface passivating reagents (e.g. surfactants) on their surface. As-prepared particles contain a large number of surface defects that may cause the low PLQY. The role of the surface defects were investigated in their photoluminescence decay process, which can be correlated with the particle size. Larger particles are characterized by a slower decay rate compared to smaller particles due to a large number of surface defects in the smaller particles that trap more excitons in the fluorescence decay process. These experimental results provide new insights into the fundamental relationship between surface state and optical properties.

Simple Fabrication of Green Emission and Water-Resistant CsPbBr3 Encapsulation Using Commercial Glass Frits (상업용 유리프릿의 소결 공정을 이용한 내수성을 갖는 CsPbBr3/Glass 세라믹 복합체의 제작)

  • Mun, Na-eun;Kim, Sunghoon
    • Korean Journal of Materials Research
    • /
    • v.31 no.1
    • /
    • pp.54-59
    • /
    • 2021
  • In this work, narrow-band green-emitting CsPbBr3 particles are embedded in commercialized glass composites by a facile dry process. By optimizing the method through sintering in glass frit (GF) composites including CsBr and PbBr2, used as precursors, the encapsulation of CsPbBr3 particles made them waterproof with green fluorescence. To improve the fluorescent properties by reducing aggregation of CsPbBr3, fumed silica (FS) is additionally used to help particles avoid bulking up in the glass matrix. The CsPbBr3 perovskite/glass composites are characterized using scanning electron microscopy (SEM) images and energy-dispersive X-ray spectroscopy (EDS) maps, which support the existence of CsPbBr3 particles in the glass matrix. The photoluminescence (PL) properties demonstrate that the emission spectrum peak, full width at half maximum (FWHM), and photoluminescence quantum yield (PLQY) values are 519 nm, 17 nm, and 17.7 %. We also confirm the water-resistant properties. To enhance water/moisture stability, the composite sample is put directly into water, with its PLQY monitored periodically under UV light.

Technology Development Trends of Cesium Lead Halide Based Light Emitting Diodes (세슘납할로겐화물 페로브스카이트 기반 LED 기술개발 동향)

  • Pyun, Sun Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.737-749
    • /
    • 2016
  • Recently perovskite materials with much cheaper cost and marvellous optoelectronic properties have been studied for next generation LED display devices overseas. Technology development trends of inorganic $CsPbX_3$(X=halogen) based LEDs (PeLEDs) with assumed high stability were investigated on literature worldwide. It was found that syntheses methods of these nanocrystals (NCs, mainly quantum dots, QDs) made great progress. A new room temperature synthesis method showed outstanding PL (photoluminescence) properties such as high quantum yield (QY), narrow emission width, storage stability comparable with, or often exceeding those of conventional hot injection method and CdSe@ZnS type inorganic colloidal QDs. PeLEDs with shell layers might be more promising, indicating urgent real research start of this solution processing technology for small businesses in Korea.

Optical Properties of Sn-doped CH3NH3PbBr3 Perovskite Nanoparticles (Sn 첨가에 따른 CH3NH3PbBr3 페로브스카이트 나노입자의 광학적 특성)

  • Sihn, Moon Ryul;Jeon, Mingi;Park, Hyerin;Choi, Jihoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.2
    • /
    • pp.90-95
    • /
    • 2019
  • Methylammonium lead bromide ($MAPbBr_3$) has attracted a lot of attention due to their excellent optoelectronic properties such as the compositional flexibility relevant to photoluminescence (PL) and UV-Vis absorbance spectrum, high diffusion length, and photoluminescence quantum yield (PLQY). Despite such advantages of organic-inorganic perovskite materials, more systematic study on manipulation of their optoelectronic properties in homo- or heterovalent metal ions doped halide perovskite nanocrystals is lacking. In this study, we systematically investigated the optical properties of colloidal $CH_3NH_3Pb_{1-x}Sn_xCl_{2x}Br_{3-2x}$ particles by addition of $SnCl_2$ into the typical methylammonium lead tribromide ($CH_3NH_3PbBr_3$) precursor solution. We found that only 1% addition of $SnCl_2$ shows a significant blue-shift from 540 nm to 420 nm in UV-Vis absorbance spectrum due to the strong quantum confinement effect. Furthermore, continuous blue-shift in photoluminescence spectra was observed as the amount of Cl increases. These experimental results provide new insights into the replacement of Pb within $MAPbBr_3$, required for the broadening of their application.