Browse > Article
http://dx.doi.org/10.4313/JKEM.2016.29.12.737

Technology Development Trends of Cesium Lead Halide Based Light Emitting Diodes  

Pyun, Sun Ho (Korea Institute of Science and Technology In formation, ReSEAT Program)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.29, no.12, 2016 , pp. 737-749 More about this Journal
Abstract
Recently perovskite materials with much cheaper cost and marvellous optoelectronic properties have been studied for next generation LED display devices overseas. Technology development trends of inorganic $CsPbX_3$(X=halogen) based LEDs (PeLEDs) with assumed high stability were investigated on literature worldwide. It was found that syntheses methods of these nanocrystals (NCs, mainly quantum dots, QDs) made great progress. A new room temperature synthesis method showed outstanding PL (photoluminescence) properties such as high quantum yield (QY), narrow emission width, storage stability comparable with, or often exceeding those of conventional hot injection method and CdSe@ZnS type inorganic colloidal QDs. PeLEDs with shell layers might be more promising, indicating urgent real research start of this solution processing technology for small businesses in Korea.
Keywords
LED; NC (nanocrystal); QD (quantum dot); perovskite; $CsPbX_3$; RT synthesis; PLQY; EQE; Ligands;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, and M. V. Kovalenko, Nano Lett., 15, 5635 (2015). [DOI: https:/doi.org/10.1021/acs.nanolett.5b02404]   DOI
2 S. Sun, D. Yuan, Y. Xu, A. Wang, and Z. Deng, ACS Nano, 26, 3648 (2016). [DOI: https:/doi.org/10.1021/acsnano.5b08193]
3 X. Li, Y. Wu, S. Zhang, B. Cai, J. Song, and H. Zeng, Adv. Funct. Mater., 26, 2435 (2016). [DOI: https:/doi.org/10.1002/adfm.201600109]   DOI
4 X. Zhang, Y. Zhang, L. Yan, C. Ji, H. Wu, Y. Wang, P. Wang, T. Zhang, Y. Wang, T. Cui, J. Zhaobd, and W. W. Yu, Nano Lett., 16, 1415 (2016). [DOI: https:/doi.org/10.1021/acs.nanolett.5b04959]   DOI
5 Z. Gao, C. S. Lee, I. Bello, S. T. Lee, R. M. Chen, T. Y. Luh, J. Shi, and C. W. Tang, Appl. Phys. Lett., 74, 865 (1999). [DOI: https:/doi.org/10.1063/1.123392]   DOI
6 X. Zhang, Y. Zhang, Wu, Y. Wang, P. Wang, T. Zhang, Y. Wang, and J. Zhao, J. Mater. Chem. A, 3, 8501 (2015). [DOI: https:/doi.org/10.1039/C5TA00092K]   DOI
7 Z. Zhang, K. Ye, J. Zhang, H. Zhang, and Y. Wang, Dalton Trans., 44, 14436 (2015). [DOI: https:/doi.org/10.1039/C5DT02093J]   DOI
8 G. Li, F.W.R. Rivarola, N.J.L.K. Davis, S. Bai, T. C. Jellicoe, S. Hou, F. Gao, R. H. Friend, N. C. Greenham, R. H. Friend, and Z. K. Tan, Adv. Mater., 28, 3528 (2016). [DOI: https:/doi.org/10.1002/adma.201600064]   DOI
9 J. Song, L. Xu, J. Li, J. Xue, Y. Dong, X. Li, and H. Zeng, Adv. Mater. 28, 4861 (2016). [DOI: https:/doi.org/10.1002/adma.201600225]   DOI
10 Tsuzuki and S. Tokito, Adv. Mater., 19, 276 (2007). [DOI: https:/doi.org/10.1002/adma.200600845]   DOI
11 D. R. Lee, B. S. Kim, C. W. Lee, Y. Im, S. H. Hwang, and J. Y. Lee, ACS Appl. Mater. Interfaces, 7, 9625 (2015). [DOI: https:/doi.org/10.1021/acsami.5b01220]   DOI
12 X. Dai, Z. Zhang, Y. Niu, H. L. Chen, J. Wang, and X. Peng, Nature, 515, 96 (2014). [DOI: https:/doi.org/10.1038/nature13829]   DOI
13 Y. Yang, Y. Zheng, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, Nat. Photonics, 9, 259 (2015).   DOI
14 Y. Shirasaki, G. J. Supran, M. G. Bawendi, and Vladimir Bulovic, Nat. Photonics, 7, 13 (2013). [DOI: https:/doi.org/10.1038/nphoton.2012.328]   DOI
15 J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, Nanoscale, 3, 4088 (2011). [DOI: https:/doi.org/10.1039/c1nr10867k]   DOI
16 M. A. Green, A. H. Baillie and H. J. Snaith, Nat. Photonics, 8, 506 (2014). [DOI: https:/doi.org/10.1038/nphoton.2014.134]   DOI
17 A. Dualeh, P. Gao, S. I. Seok, M. K. Nazeeruddin, and M. Gratzel, Chem. Mater., 26, 6160 (2014).   DOI
18 Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, A. Sadhanala, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, Nat. Nanotechnol., 9, 687 (2014). [DOI: https:/doi.org/10.1038/nnano.2014.149]   DOI
19 H. Cho, S. H. Jeong, M. H. Park, Y. H. Kim, C. Wolf, C. L. Lee, J. H. Heo, N. S. Myoung, S. H. Im, R. H. Friend, S. H. Im, and T. W. Lee, Science, 350, I222 (2015). [DOI: https:/doi.org/10.1126/science.aad1818]   DOI
20 F. Brivio, A. B. Walker, and A. Walsh, APL Mater., 1, 042111 (2013). [DOI: https:/doi.org/10.1063/1.4824147]   DOI
21 M. Kulbak, S. Gupta, N. Kedem, T. Bendikov, G. Hodes, and D. Cahen, J. Phys. Chem. Lett., 7, 167 (2016). [DOI: https:/doi.org/10.1021/acs.jpclett.5b02597]   DOI
22 H. S. Kim, S. H. Im, and N. G. Park, J. Phys. Chem. C, 118, 5615 (2014). [DOI: https:/doi.org/10.1021/jp409025w]   DOI
23 S. Bai and F. Gao, J. Mater. Chem. C, 4, 3898 (2016). [DOI: https:/doi.org/10.1039/C5TC04116C]   DOI
24 L. Protesescu, S. Yakunin, M. I. Bodnarchuk, R. Caputo, A. Walsh, and M. V. Kovalenko, Nano. Lett., 15, 3692 (2015). [DOI: https:/doi.org/10.1021/nl5048779]   DOI
25 J. Song, J. Li, X. Li, L. Xu, Y. Dong, and H. Zeng, Adv Mater., 27, 7162 (2015). [DOI: https:/doi.org/10.1002/adma.201502567]   DOI
26 Y. H. Kim, E. Yassitepe, O. Voznyy, R. Comin, G. Walters, X. Gong, P. Kanjanaboos, and E. H. Sargent, ACS Appl. Mater. Interfaces, 7, 25007 (2015). [DOI: https:/doi.org/10.1021/acsami.5b09084]   DOI
27 I. Lignos, S. Stavrakis, G. Nedelcu, L. Protesescu, A. J. deMello, and M.V. Kovalenko, Nano Lett., 16, 1869 (2016). [DOI: https:/doi.org/10.1021/acs.nanolett.5b04981]   DOI
28 J. D. Roo, P. Geiregat, G. Nedelcu, W. Walravens, J. Maes, J. C. Martins, I. V. Driessche, M. V. Kovalenko, and Z. Hens, ACS Nano, 10, 2071 (2016). [DOI: https:/doi.org/10.1021/acsnano.5b06295]   DOI