• Title/Summary/Keyword: PLEDs

Search Result 40, Processing Time 0.023 seconds

Effect of the LiF anode interfacial layer on polymer light emitting diodes

  • Sohn, Sun-Young;Lee, Dae-Woo;Park, Keun-Hee;Jung, Dong-Geun;Kim, H.M.;Manna, U.;Yi, J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1056-1058
    • /
    • 2005
  • Electrical and optical characteristics of MEH-PPV-based PLEDs with the LiF anode interfacial layer were investigated. The maximum luminance efficiency of the device with a LiF anode interfacial layer of 1-nm-thick was 3.0 lm/W, which is higher than 1.97 lm/W of the device without a LiF layer. By inserting LiF, excess injected holes from ITO anode can be blocked and hence the recombination ratio of electrons and holes can be increased in the emitting layer to improve device efficiency.

  • PDF

High resolution patterning of polyfluorene derivative containing photo cross-linkable oxetane units

  • Park, Moo-Jin;Lee, Jeong-Ik;Chu, Hye-Yong;Kim, Seong-Hyun;Zyung, Taeh-Young;Hwang, Do-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1419-1420
    • /
    • 2005
  • We have synthesized a photo patternable blue lightemitting polyfluorene (PF) derivative containing cross-linkable oxetane units. Poly(9,9-bis-(4-octyloxyphenyl)- fluorene-2,7-diyl-alt-9,9-bis-((3-hexyloxy-3'- ethyl)-oxetane)-fluorene-2,7-diyl) has been synthesized by Suzuki coupling polymerization. The relationship between patterning property and several variables such as the intensity of the exposed UV light, the concentrations of additives, has been studied by using optical microscope UV/visible spectroscopy, photoluminescence and scanning electron microscope (SEM). We obtained fine patterns with 10 mm resolution using the polymer film after exposure and development. This patterning method using conjugated polymers can be applicable to make fine pixels for PLEDs and OFETs.

  • PDF

Self-organized gradient hole injection to improve the performance of organic light-emitting diodes

  • Lee, Tae-Woo;Chung, Young-Su;Kwon, O-Hyun;Park, Jong-Jin;Chang, Seoung-Wook;Kim, Mu-Hyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1813-1818
    • /
    • 2006
  • We demonstrate a new approach to form gradient hole injection layer (HIL) in organic light-emitting diodes (OLEDs). Single spincoating of hole-injecting conducting polymer compositions with a perfluorinated ionomer results in gradient workfunction through the layer by self-organization, which lead to remarkably efficient single layer polymer light-emitting diodes (PLEDs) (${\sim}21$ cd/A). The device lifetime was significantly improved (${\sim50$ times) compared with the conventional hole injection layer, poly(3,4-ethylenedioxy-thiophene)/polystyrene sulfonate. This solution processed HIL also produced dramatically enhanced luminous efficiency (${\sim}34$ cd/A) in vacuum- deposited green fluorescent OLEDs while the vacuum deposited HIL gave the luminous efficiency of ${\sim}23$ cd/A in the same device structure.

  • PDF

Synthesis and Characterization of Fluorescent Poly(aryl ether thiadiazole)s and Poly(aryl ether oxadiazole)s

  • Gyesang Yoo;Hong, Sung-Il;Hwang, Seung-Sang;Lee, Jaehwan
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.25-28
    • /
    • 1998
  • Since the first report on poly(p-phenylenevinylene), the electroluminescent properties of namy conjugated polymers such as poly(p-phenylenevinylene) (PPV), poythiophene (PT), poly(p-phenylene) (PPP), and polyfluorene (PF) have been investigated because of their potential for use in display technology However, in the application of polymer light-emitting diodes (PLEDs), there are yet three fundamental issues to be considered: (1) full color capability, (2) emission efficiency, (3) stability (lifetime). (omitted)

  • PDF

Synthesis of New N,N-Bis(5-acetylpyridin-2-yl)-phenylamine Derivatives and Their Solvatochromic Effects

  • El-Deeb, Ibrahim Mustafa;Lee, So-Ha
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.411-417
    • /
    • 2008
  • A group of new N,N-bis(5-acetylpyridin-2-yl)phenylamine derivatives was synthesized in good yield applying an optimized Buchwald-Hartwig amination protocol. The synthesized compounds showed UV absorption maxima in the range of 320-360 nm, and showed good luminescence at dilute concentrations in the blue region of the spectra (in the range of 480-497 nm). They showed also a bathochromic shift associating the increase in solvent polarity. The synthesized compounds could be investigated for use in OLEDs or as potential monomers for PLEDs.

Fabrication and Characterization of Polymer Light Emitting Diodes by Using PFO/PFO:MEH-PPV Double Emitting Layer (PFO/PFO:MEH-PPV 이중 발광층을 이용한 고분자 유기발광다이오드의 제작과 특성 연구)

  • Chang, Young-Chul;Shin, Sang-Baie
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.2
    • /
    • pp.23-28
    • /
    • 2008
  • To improve the external quantum efficiency by means of the optimization of the polymer light emitting diodes(PLEDs) structure, the PLED with ITO/PEDOT:PSS/(PFO)/PFO:MEH-PPV/LiF/Al structure were fabricated and investigated the electrical and optical properties for the prepared devices. ITO(indium tin oxide) and PEDOT:PSS [poly (3,4-ethylenedioxythiophene): poly(styrene sulfolnate)] were used as transparent anode film and hole transport materials, respectively. PFO[poly(9,9-dioctylfluorene)] and MEHPPV[poly(2-methoxy-5(2-ethylhe xoxy)-1,4-phenylenevinyle)] were used as the light emitting host and dopant materials. The doping concentration of MEH-PPV was 9wt% with thickness of about $400{\AA}$. We investigated the dependence of the PFO thickness ranging from $200{\AA}$ to $300{\AA}$ on the electrical, optical properties of PLEDs. Among prepared PLED devices with different PFO thicknesses, the highest value of the luminance was obtained for the PLED device with $250{\AA}$ in thickness. As a result, the current density and luminance ware found to be about $400mA/cm^2$ and $1500cd/m^2$ at 13V, respectively. In addition, the luminance and current efficiency of PLED device with double emitting layer (PFO/PFO:MEH-PPV) were improved about 3 times compared with the one with single emitting layer (PFO:MEH-PPV).

  • PDF

Preparation of Polymer Light Emitting Diodes with PFO-poss Organic Emission Layer on ITO/Glass Substrates (ITO/Glass 기판위에 PFO-poss 유기 발광층을 가지는 고분자 발광다이오드의 제작)

  • Yoo, Jae-Hyouk;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.4
    • /
    • pp.51-56
    • /
    • 2006
  • Polymer light emitting diodes (PLEDs) with ITO/EDOT:PSS/PVK/PFO-poss/LiF/Al structures were prepared by the spin coating method on ITO(indium tin oxide)/glass substrates. PFO-poss[Poly(9,9-dioctylfluorenyl-2,7-diyl) end capped with poss] was used as light emitting polymer. PVK[poly(N-vinyl carbazole)] and PEDOT:PSS [poly(3,4-ethylenedioxythiophene):poly(styrene sulfolnate)] polymers were used as the hole injection and transport materials. The effect of PFO-poss concentration and the heating temperatures on the electrical and optical properties of the devices were investigated. At the same concentration of PFO-poss solution, the current density and luminance of PLED device tend to increase as the annealing temperature increase from $100^{\circ}C$ to $200^{\circ}C$. The maximum luminance was found to be about 958 cd/m2 at 13V for the PLED device with 1.0 wt% PFO-poss at the annealing temperature of $200^{\circ}C$. In addition, the PLED device showed bluish white emission through the strong greenish peak with 523 nm in wavelength. As the concentration of PFO-poss increase from 0.5 wt% to 1.0 wt% and temperature of PLEDs increase from $100^{\circ}C$ to $200^{\circ}C$, the emission color tend to be shifted from blue with (x, y) = (0.17,0.14) to bluish white with (x, y) : (0.29,0.41) in CIE color coordinate.

  • PDF

The Electrical and Optical Properties of Polymer Light Emitting Diode with ITO/PEDOT:PSS/MEH-PPV/Al Structure at Various Concentration of MEH-PPV (ITO/PEDOT:PSS/MEH-PPV/Al 구조에서 MEH-PPV 농도에 따른 유기발광다이오드의 전기$\cdot$광학적 특성)

  • Gong Su Cheol;Back In Jea;Yoo Jae Hyouk;Lim Hun Seung;Chang Ho Jung;Chang Gee Keun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.155-159
    • /
    • 2005
  • In this report, Polymer light emitting diodes (PLEDs) with an ITO/PEDOT:PSS/MEH-PPV/Al structure were prepared by spin coating method on the glass substrate patterned ITO (indium tin oxide), using PEDOT:PSS(poly(3,4=ethylenedioxythiophene):poly(styrene sulfolnate)) as the hole transfer material and MEH-PPV(poly(2-methoxy-5-(2-ethyhexoxy)-1,4-phenylenvinylene)) having a different concentration (0.1, 0.3, 0.5, 0.7, 0.9, 1.5 wt$\%$) as the emitting material. The electrical and optical properties of the prepared PLED samples were investigated. The good electrical and optical properties were observed for the PLED samples with a MEH-PPV concentration ranging from 0.5 to $0.9 wt\%$. However, the current and luminance values for PLED sample with $1.5 wt\%$ of MEH-PPV decreased greatly. The maximum luminance and light efficiency for the PLEDs with concentration of $0.5 wt\%$ MEH-PPV were $409 cd/m^2$ and 4.90 Im/W at 9 V, respectively. The emission spectrums were found to be $560{\~}585 nm$ in wavelength showing orange color.

  • PDF

Design and Implementation of Polymer-Light Emitting Diodes by using Nanocantact Printing (나노접촉 인쇄공정을 이용한 폴리머 유기정보표시소자 설계 및 구현)

  • Jo Jeong-Dai;Kim Kwang-Young;Lee Eung-Sug;Choi Byung-Oh
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1511-1513
    • /
    • 2005
  • The polymer-light emtting diodes(PLEDs) were comprised a design of OLED array, process develop by using ITO thin glass, and fabrication of PDMS stamp by using nanocontact printing. In the study, we describe a different approach for building OLEDs, which is based on physical lamination of thin metal electrodes supported by a PDMS stamp layer against an electroluminescent organic. We develop that devices fabricated in this manner have better performance than those constructed with standard processing techniques. The lamination approach avoids forms of disruption that can be introduced at the electrode organic interface by metal evaporation and has a reduced sensitivity to pinhole or partial pinhole defects. Also, it is easy to build patterned PLED with feature sizes into the nanometer regime. This method provides a new route to PLED for applications ranging from high performance displays to storage and lithography systems, and PLED can used for organic electronics and flexible display.

  • PDF

Preparation and Characterization of White Phosphorescence Polymer Light Emitting Diodes Using PFO:Ir(ppy)3:MDMO-PPV Emission Layer

  • Park, Byung-Min;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.79-83
    • /
    • 2011
  • White phosphorescence polymer light emitting diodes (WPhPLEDs) with a glass/ITO/PEDOT:PSS/PFO:$Ir(ppy)_3$:MDMO-PPV/TPBI/LiF/Al structure were fabricated to investigate the effects of $Ir(ppy)_3$ doping concentrations on the optical and electrical properties of the devices. PFO, $Ir(ppy)_3$ and MDMO-PPV conjugated polymers as host and guest materials in the emission layer were spin coated at various concentrations of $Ir(ppy)_3$ ranging from 0.0 to 20.0 vol.%. As the concentration of $Ir(ppy)_3$ increased from 5.0 to 20.0 vol.%, the luminance and current efficiency values of the devices decreased clearly, which are attributable to the quenching effect at a high doping concentration. The maximum luminance and current density were 2850 $cd/m^2$ and 741 $mA/cm^2$, respectively for a WPhPLED with an $Ir(ppy)_3$ concentration of 5.0 vol.%. The CIE color coordinates were about x=0.33 and y=0.34 at 11V, showing a good white color.