• Title/Summary/Keyword: PLA printing material

Search Result 34, Processing Time 0.021 seconds

Evaluation of Applicability of Customized Bolus According to 3D Printer Material Characteristics (3D 프린터 소재 특성에 따른 맞춤형 볼루스의 적용성 평가)

  • Kyung-Tae Kwon;Hui-Min Jang;Myeong-Seong Yoon
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1091-1097
    • /
    • 2023
  • Bolus is used in radiation therapy to prescribe an even dose to the tumor when the skin surface is inclined or has irregularities. At this time, the dose to the skin surface increases. Due to the patient's unique body structure and irregular skin, voids may occur between the bolus and the skin, which may reduce the accuracy of treatment. Therefore, in this study, the existing bolus and the self-produced bolus through 3D printing were applied to the nasal area, and the difference between the surface dose after treatment plan and the dose directly measured with an Optically Stimulated luminescence(OSL) dosimeter was compared to the existing bolus. The bolus rate was 97%, PLA 100.33%, ePETELA 75A 100.53%, and ePETELA 85A 100.36%. It was confirmed that there was little error in the measurement values and treatment plan values for each material. In addition, compared to when applying a conventional bolus, a difference of -3% to +0.5% for a 3D printed bolus can be confirmed, so a customized bolus produced through 3D printing can complement the shortcomings of the existing bolus. It is believed that there will be.

Evaluation of Shielding Performance of 3D Printer Materials for High-energy Electron Radiation Therapy (고 에너지 전자선 치료를 위한 3D 프린터 물질의 차폐 성능평가)

  • Chang-Woo, Oh;Sang-Il, Bae;Young-Min, Moon;Hyun-Kyoung, Yang
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.687-695
    • /
    • 2022
  • To find a 3D printer material that can replace lead used as a shield for high-energy electron beam treatment, the shielding composites were simulated by using MCNP6 programs. The Percent Depth Dose (PDD), Flatness, and Symmetry of linear accelerators emitting high-energy electron beams were measured, and the linear accelerator was compared with MCNP6 after simulation, confirming that the source term between the actual measurement and simulation was consistent. By simulating the lead shield, the appropriate thickness of the lead shield capable of shielding 95% or more of the absorbed dose was selected. Based on the absorption dose data for lead shield with a thickness of 3 mm, the shielding performance was analyzed by simulating 1, 5, 10, and 15 mm thicknesses of ABS+W (10%), ABS+Bi (10%), and PLA+Fe (10%). Each prototype was manufactured with a 3D printer, measured and analyzed under the same conditions as in the simulation, and found that when ABS+W (10%) material was formed to have a thickness of at least 10mm, it had a shielding performance that could replace lead with a thickness of 3mm. The surface morphology and atomic composition of the ABS+W (10%) material were evaluated using a scanning electron microscope (SEM) and an energy dispersive X-ray spectrometer (EDS). From these results, it was confirmed that replacing the commercialized lead shield with ABS+W (10%) material not only produces a shielding effect such as lead, but also can be customized to patients using a 3D printer, which can be very useful for high-energy electron beam treatment.

Application of Patient-Specific 3D-Printed Orthopedic Splint for Bone Fracture in Small Breed Dogs

  • Kwangsik Jang;Eun Joo Jang;Yo Han Min;Kyung Mi Shim;Chunsik Bae;Seong Soo Kang;Se Eun Kim
    • Journal of Veterinary Clinics
    • /
    • v.40 no.4
    • /
    • pp.268-275
    • /
    • 2023
  • In this paper, we designed 3D-printed orthopedic splint models for patient-specific external coaptation on fracture healing and analyzed the stability of the models through finite element method (FEM) analysis under compressive load conditions. Polylactic acid (PLA) and acrylonitrile-butadiene-styrene (ABS) based 3D splint models of the thicknesses 1, 3, 5 and 7 mm were designed, and Peak von Mises stress (PVMS) and maximum displacement (MD) of the models were analyzed by FEM under compressive loads of 50, 100, 150, and 200 N. The FEM results indicated that PVMS and MD values, regardless of material, had a negative correlation with the thickness of the models and a positive correlation with the compressive load. There was a risk of splint deformation under conditions more extreme than 100 N with 5 mm thickness. For successful clinical application of 3D-printed orthopedic splints in veterinary medicine, it is recommended that the splint should be produced not less than 5 mm thickness. Also, it is expected to be stable when the splint is applied to situations with a compressive load of 100 N or less. There is an advantage of overcoming the limitations of the existing bandage method through 3D-printing technology as well as verifying the stability through 3D modeling before application. Such 3D printing technology will be widely used in veterinary medicine and various fields as well as orthopedics.

A Study on the Fabrication of bone Model X-ray Phantom Using CT Data and 3D Printing Technology (CT 데이터와 3D 프린팅 기술을 이용한 뼈 모형 X선 팬텀 제작에 관한 연구)

  • Yun, Myeong Seong;Han, Dong-Kyoon;Kim, Yeon-Min;Yoon, Joon
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.879-886
    • /
    • 2018
  • A 3-dimensional (D) printer is a device capable of outputting a three-dimensional solid object based on data modeled in a computer. These features are utilized in the bone model X - ray phantom production etc using CT data by fusing with the radiation science field. A bone model phantom was made using data obtained by CT scan of an existing Pelvis phantom, using PLA, Wood, XT-CF20, Glow fill, Steel filaments which are materials of Fused Filament Fabrication (FFF) 3D printer.Measure Hounsfield Unit (HU) with images obtained by CT scan of the existing Pelvis phantom and five material phantoms made with 3D printer under the same conditions,SI and SNR were measured using a diagnostic X-ray generator, and each phantom was compared and analyzed.As a result, the X - ray phantom in the X - ray examination condition of the limb was found to be most suitable for the glow fill filament.The characteristics of the filament can be known to the base of this research and the practicality of X - ray phantom fabrication was confirmed.