• Title/Summary/Keyword: PLA fiber

Search Result 64, Processing Time 0.035 seconds

Manufacture of Continuous Glass Fiber Reinforced Polylactic Acid (PLA) Composite and Its Properties (연속 유리섬유 강화 폴리유산 복합재료의 제조 및 물성)

  • Roh, Jeong U;Lee, Woo Il
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.230-234
    • /
    • 2013
  • The continuous glass fiber reinforced poly-lactic acid (PLA) composite was manufactured by direct melt impregnation. The mechanical and thermal properties of continuous glass fiber reinforced PLA composite were observed. Measured properties were compared with the reference values of neat PLA and the injection molded glass fiber/ PLA composite. The continuous glass fiber reinforced PLA composite having a fiber volume fraction of 27.7% shows enhanced tensile strength of 331.1 MPa, flexural strength of 528.6 MPa, and flexural modulus of 24.0 GPa. The enhanced heat deflection temperature (HDT) and the increased cystallinity were also observed. The degree of impregnation as a function of pulling speed was also assessed. The degree of impregnation at the pulling speed of 5 m/min was over 90% in this research.

Color Fastness of PLA Fiber Dyed with Vat Dyes (Poly Lactic Acid 섬유의 Vat 염료에 대한 염색견뢰도)

  • Jeong, Dong-Seok;Chun, Tae-Il
    • Textile Coloration and Finishing
    • /
    • v.25 no.1
    • /
    • pp.75-81
    • /
    • 2013
  • Colorimetric and wash fastness data after repeated wash cycles of Poly Lactic Acid(PLA) fiber were examined with C. I. Vat Blue 1, also other comparing 2 dyes (C. I. Vat Blue 35, C. I. Vat Blue 5), in this study. The fastness of three vat dyes on PLA fiber to repeated washing according to KS K 0430 A-2 regulation increased with dyeing temperatures. The $L^*$ values of the dyed material gradually increased with increasing numbers of wash. Also the f(k) values were decreased reversely. During repeated washing, the vagrant dyes were deposited especially on nylon, polyester, cotton of the adjacent multifiber. C. I. Vat Blue 5 displayed lowest color change to repeated washing of the three dyes used.

Coloration of Poly(lactic acid) with Disperse Dyes. 1. Comparison to Poly(ethylene terephthalate) of Dyeability, Shade and Fastness

  • Choi Jae-Hong;Seo Woon-Young
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.270-275
    • /
    • 2006
  • The dyeability of poly(lactic acid) [PLA] with a range of commercial disperse dye was examined and compared to that of poly(ethylene terephthalate) [PET] in addition to the colour and fastness of the resultant dyeings. A screening exercise in which twenty dyes of differing energy types and chemical classes were applied to PLA revealed a substantial variation between the dyes in terms of dye uptake (12-88 % at 4 % o.w.f.). Nine dyes exhausted above 70 % and were selected for further study, which involved comparison of shade and fastness of PLA dyeings with those of the corresponding PET dyeings. Differences in shade depended on hue while wet fastness of each of the PLA dyeings was either the same or 0.5-1.0 point lower than its PET counterpart. In all but one case, dye photostability in PLA was found to be very similar to that in PET. Dye build-up profiles on PLA were also investigated and from these results mixtures of compatible dyes identified.

Characteristic Evaluation of FA-Based Geopolymer with PLA Fiber (PLA 섬유를 가진 다공성 플라이애시 기반 지오폴리머의 특성 평가)

  • Kwon, Seung-Jun;Hwang, Sang-Hyeon;Cho, Young-Keun;Kim, Tae-Sang;Moon, Eun-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.187-193
    • /
    • 2019
  • Regarding physical absorption mechanism for fine particles(Dust), internal pore-bridging is a major parameter in porous media. In this paper, internal bridging pore system is invented through FA-based geopolymer and incorporated PLA (Polylactic Acid) fiber with biodegradability. With various mix proportions, compressive strength over 20MPa is obtained but PLA is little dissolved in the condition of NaOH 5mole and $30^{\circ}C$ of temperature, which was found that temperature rising accelerates PLA solubility. Within 24hours, beads type PLA is completely dissolved under $90{\sim}130^{\circ}C$ and NaOH 5~12mole of alkali. In room condition, geo-polymerization is limitedly occurs so that the internal pore after PLA dissolution is thought to be effective to absorption and storage of fine particles.

Preparation and Mechnical Properties of Biodegradable Plastic Natural Fiber Composite (생분해성 플라스틱 천연Fiber 복합체의 물리적 특성)

  • Lee, Dong-Hyun;Kim, Sung-Tae;Kim, Dong-Gye;Kim, Sang-Gu;Park, Byung-Wok
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.79-79
    • /
    • 2011
  • 최근 플라스틱 제품의 사용후 폐기에서 발생 되는 환경적인 문제점들이 대두 되고 있는 가운데, 이러한 제품에 대한 친환경적인 재료 설계에 대한 요구가 거세지고 있는 실정으로 플라스틱 업계의 사활이 걸릴 정도의 중요한 문제로 부각되고 있다. 본 연구에서는 이러한 플라스틱 제품의 치명적인 환경적인 문제점을 극복하고자, Matrix 물질이 되는 플라스틱에서 부터 친 환경적인 생분해성 수지를 사용하면서, 물성의 강화제로써 천연물 유래의 여러 종류의 섬유를 사용하고자 하였다.가장 보편화된 생분해성 플라스틱인 지방족 폴리에스테르 계통의 생분해성 수지와 Polylactic acid에 대해 검토를 하였다. 지방족 폴리에스테르 의 경우는 기존 플라스틱 제품과 비교해서 유연하고, 신장율이 높고, PLA 대비 내열 사용한계 온도도 높아서 물성적인 측면에서 상당한 장점을 가지고는 있으나 가격이 매우 고가이므로, 기존 플라스틱을 대체하는 것에는 문제점이 있다. 반면 PLA의 경우 지방족 폴리에스테르 대비 절반 이하의 가격이고 기계적 강도 또한 매우 높기 때문에 기존의 플라스틱을 대체할 수 있는 가장 유력한 물질로 대두 되고 있으나, 사출물과 같은 충격이 요구되는 제품에 있어서는 PLA 고유의 약한 취성이 가장 큰 단점으로 지적되고 있다. 본 연구에서는 이러한 PLA를 기반으로 PLA의 장점이 기계적 강성을 유지하면서, 취성을 보완하기 위해 PBS를 혼합 할 수 있는 기술을 개발하였으며, 또한 원재료의 Cost를 줄이고, PBS 혼합에 따른 PLA의 기계적 강도 감소를 보완하기 위해 천연물 유래의 Wood fiber, Starch, Bamboo fiber, Cellulose fiber, Paper fiber 와 같은 각종 천연 Filler를 사용하여 기계적 기계적 강도 감소를 최소화 하였다.

  • PDF

Biodegradability of Polylactic Acid Fabrics by Enzyme Hydrolysis and Soil Degradation

  • Lee, So Hee
    • Textile Coloration and Finishing
    • /
    • v.29 no.4
    • /
    • pp.181-194
    • /
    • 2017
  • The biodegradability of polylactic acid(PLA) fabrics was evaluated by two methods: enzyme and soil degradation. Three different enzymes were selected to evaluate. Degradation times were measured at optimal enzyme treatment conditions. Biodegradation by enzymatic hydrolysis was compared with soil degradation. As a result, biodegradation created cracks on the fiber surface, which led to fiber thickening and shortening. In addition, new peak was observed at $18.5^{\circ}$ by degradation. Moreover, cracks indicating biofragmentation were confirmed by enzyme and soil degradation. By enzyme and soil degradation, the weight loss of PLA fabrics was occurred, there through, the tensile strength decreased about 25% by enzyme hydrolysis when 21 days after, and 21.67% by soil degradation when 60 days after. Furthermore, the biodegradability of PLA fabrics by enzymatic and soil degradation was investigated and enzymatic degradation was found to be superior to soil degradation of PLA fabrics. Among the three enzymes evaluated for enzymatic degradation, alcalase was the most efficient enzymes. This study established the mechanism of biodegradation of PLA nonwovens, which might prove useful in the textile industry.

Study on Low Temperature Curing Emulsion of PLA Fiber for Bedding (침장용 PLA 섬유에 대한 저온 경화유제에 관한 연구)

  • Ahn, Young-Moo
    • Journal of Fashion Business
    • /
    • v.16 no.1
    • /
    • pp.41-51
    • /
    • 2012
  • Polyester is mainly used as a bedding filler material. PLA fiber as an eco-friendly material for substituting polyester has a low melting temperature and therefore a hardening process is impossible. This study is to develop the oil for feather touch that can treat at the melting temperature of PLA. The slippery and soft aminosilicone emulsion, and the bulky epoxysilicone emulsion were used. They had proper viscosity and particle size for flexibility and elasticity. When using methoxy aminosilane [$H_2NSi(OCH_3)_3$] as an aminosilane and [$Zn(OCOCH_3)_2$] as a catalyst, the hardening reaction was fast and effective. Feather touch process were treated by 2 steps. At first step, aminosilicone emulsion, epoxysilicone emulsion and methylaminosilane were mixed and homogenized, and at second step, 5% blened solution of the first step, Zn catalyst 1%, distilled water 94% were treated at PLA fiber. After treatment the static friction coefficient and dynamic friction coefficient were reduced to 23.5-60.8% and 30.0-61.3% respectively, and the laundry and sun light fastnesses have not shown any decrease.

Effects of In Vitro Degradation on the Weight Loss and Tensile Properties of PLA/LPCL/HPCL Blend Fibers

  • Yoon Cheol Soo;Ji Dong Sun
    • Fibers and Polymers
    • /
    • v.6 no.1
    • /
    • pp.13-18
    • /
    • 2005
  • PLA/LPCL/HPCL blend fibers composed of poly (lactic acid) (PLA), low molecular weight poly ($\varepsilon$-caprolactone) (LPCL), and high molecular weight poly ($\varepsilon$-caprolactone) (HPCL) were prepared by melt blending and spinning for bioab­sorbable filament sutures. The effects of blending time and blend composition on the X-ray diffraction patterns and tensile properties of PLA/LPCL/HPCL blend fibers were characterized by WAXD and UTM. In addition, the effect of in vitro degra­dation on the weight loss and tensile properties of the blend fibers hydrolyzed during immersion in a phosphate buffer solu­tion at pH 7.4 and 37$^{\circ}C$ for 1-8 weeks was investigated. The peak intensities of PLA/LPCL/HPCL blend fibers in X-ray diffraction patterns decreased with an increase of blending time and LPCL contents in the blend fibers. The weight loss of PLA/LPCL/HPCL blend fibers increased with an increase of blending time, LPCL contents, and hydrolysis time while the tensile strength and modulus of the blend fibers decreased. The tensile strength and modulus of the blend fibers were also found to be increased with an increase of HPCL contents in the blend fibers. The optimum conditions to prepare PLA/LPCL/HPCL blend fibers for bioabsorbable sutures are LPCL contents of $5 wt\%, HPCL contents of $35 wt\%, and blending time of 30 min. The strength retention of the PLA/LPCL/HPCL blend fiber prepared under optimum conditions was about $93.5\% even at hydrolysis time of 2 weeks.

Effect of In Vitro Degradation on the Weight Loss and Tensile Strength of PLA/PEG Melt Blend Fiber (In Vitro 분해가 PLA/PEG 용융블렌드 섬유의 무게감량률 및 인장강도에 미치는 영향)

  • Yoon, Cheol-Soo;Ji, Dong-Sun
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.581-587
    • /
    • 2009
  • PLA/PEG blend fibers composed of poly (lactic acid) (PLA) and poly (ethylene glycol) (PEG) were prepared via melt blending and spinning for bioabsorbable filament sutures. The blend fibers hydrolyzed with the immersion in a phosphate buffer solution at pH 7.4 and $37\;^{\circ}C$ for 1~8 weeks. The effects of blending time, blend composition, and hydrolysis time on the weight loss and tensile strength of the hydrolyzed blend fibers were investigated. After hydrolysis, the weight loss of the blend fibers increased with increasing PEG content, blending time, and hydrolysis time. The tensile strength and tensile modulus of the blend fibers decreased with increasing PEG content, blending time, and hydrolysis time. Therefore, it can be concluded that the weight loss of the PLA/PEG blend fibers was less than 0.9% even at hydrolysis time of 2 weeks and their strength retentions were over 90%.