• Title/Summary/Keyword: PL spectrum

Search Result 238, Processing Time 0.031 seconds

Optical Properties of Er-implanted GaN (Er 이온 주입된 GaN의 광학적 특성)

  • Son, Chang-Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1101-1105
    • /
    • 2005
  • We have investigated the optical properties of Erbium (Er)-implanted GaN by photoluminescence (PL). Various doses of Er ion were implanted on GaN epilayers by ion implantation. Visible green emission lines due to inner 4f shell transitions for $Er^{3+}$ were observed from the PL spectrum of Er-implanted GaN. The emission spectrum consists of two narrow green lines at 537 and 558 nm. The green emission lines are identified as $Er^{3+}$ transitions from the $^{5}H_{11/2}$ and $^{4}S_{3/2}$ levels to the $^{4}I_{15/2}$ ground state. The stronger peaks in the case with the dose of $5{\times}10^{14}cm^{-2}$, together with the relatively higher intensity of the $Er^{3+}$ luminescence in the lower doped sample. It implies that some damage remains in the case with the dose of $1{\times}10^{16}cm^{-2}$. The peak positions of emission lines due to inner 4f shell transitions for $Er^{3+}$ do not change with increasing temperature. It indicates that $Er^{3+}$ related emission depends very little on the ambient temperature.

Photocurrent Characteristic of CdTe nanoparticles (CdTe 나노입자를 이용한 광전류 특성)

  • Kim, Jin-Hyong;Cho, Kyoung-Ah;Kim, Hyun-Suk;Lee, Joon-Woo;Park, Byoung-Jun;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.37-40
    • /
    • 2004
  • CdTe nanoparticles were synthesized in aqueous solution by colloidal method. The absorption and photoluminescence(PL) spectrum of the synthesized CdTe nanoparticles revealed the strong exitonic peak in the visible region. Photocurrent of CdTe nanoparticles were observed in the structure of Al/CdTe/ITO that was fabricated by spin coating of CdTe nanoparticles. The wavelength dependence of photocurrent was very similar to the absorption spectrum, indicating the charges generated by the absorption of photons give direct contribution to photocurrent. This study suggests that CdTe nanoparticles are very prospective materials for optoelectronics.

  • PDF

A Study on Photo-Luminescence Spectrum Properties of ZnS:Mn QD Prepared by Wet-Process (습식공정을 이용한 ZnS:Mn2+계 QD의 합성 조건에 따른 광 특성 변화 연구)

  • Cha, Ji Min;Lee, Yoon Ji;Moon, Seong Cheol;Lee, Seong Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.1
    • /
    • pp.42-47
    • /
    • 2017
  • In this study, the physical and optical properties of $ZnS:Mn^{2+}$ Quantum Dot prepared by wet-process condition with Mn/Zn ratio was valuated. The powder characteristics and optical behavior were investigated through XRD, TEM and Photo spectrometer exicted by various UV light source. We found the main peak of ZnS (111) was shifted by 0.8 degree to low angle position with increasing stirring energy from 200 RPM to 600 RPM, which is thought to be the increase of lattice defects during wet process. The photo luminescence at 600 RPM shows also higher blue intensity which is well correlated with XRD results. With increasing Mn/Zn ratio, the PL intensity become higher and shifed by 8.5nm to right side, by the increment of substitutional $Mn^{2+}$ ions.

Photocurrent of HgTe Quantum Dots (HgTe 양자점의 광전류 특성)

  • Kim, Hyun-Suk;Kim, Jin-Hyoung;Lee, Joon-Woo;Song, Hyun-Woo;Cho, Kyoun-Gah;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.84-87
    • /
    • 2003
  • HgTe quantum dots(QDs) were synthesized in aqueous solution by colloidal method. The absorption and photoluminescence(PL) spectrum of the synthesized HgTe QDs revealed the strong exitonic peak in the IR region. And the photocurrent measurement of colloidal QDs are performed using IR light source. The lineshape of the wavelength dependent intensity of photocurrent was very similar to the absorption spectrum, indicating the charges generated by the absorption of photons give direct contribution to photocurrent. The channels of dark current are supposed $H_2O$ containing in thiol by the remarkable drop of current at the state of vacuum. It was thought that the proper passivation layer on the top of HgTe film reduce the dark current and the adequate choice of capping material improves the efficiency of the photocurrent in the HgTe QDs. This study suggests that HgTe QDs are very prospective materials for optoelectronics including photodetectors in the IR range.

  • PDF

Effects of Hole-Injection Buffer Layer in Organic Light-Emitting Diodes (유기 발광 소자에서 정공 주입 버퍼층의 효과)

  • 정동희;김상걸;오현석;홍진웅;이준웅;김영식;김태완
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.816-825
    • /
    • 2003
  • Current-voltage-luminance characteristics of organic light-emitting diodes (OLEDs) were measured in the temperature range of 10 K~300 K. Indium-tin-oxide (ITO) was used as an anode and aluminum as a cathode in the device. Organic of N,N'-diphenyl-N,N'-di(m-tolyl)-benzidine (TPD) was used for a hole transporting material, and tris (8-hydroxyquinolinato) aluminum (Alq$_3$) for an electron transporting material and emissive material. And copper phthalocyanine (CuPc), poly(3,4-ethylenedi oxythiophene);poly(styrenesulfonate) (PEDOT:PSS), and poly(N-vinylcarbazole) (PVK) were used for hole-injection buffer layers. From tile analysis of electroluminescence (EL) and photoluminesccnce (PL) spectra of the Alq$_3$, the EL spectrum is more greenish then that of PL. And the temperature-dependent current-voltage characteristics were analyzed in the double and multilayer structure of OLEDS. Electrical conduction mechanism was explained in the region of high-electric and low-electric field. Temperature-dependent luminous efficiency and operating voltage were analyzed from the current-voltage- luminance characteristics of the OLEDS.

Optical and Electrochemical Property of Self-Assembled Monolayers Containing Viologen Derivative by EQCM Study (EQCM법을 이용한 자기조립된 Viologen 유도체의 광학적 특성 및 전기화학적 특성 연구)

  • Lee, Dong-Yun;Park, Sang-Hyun;Park, Jae-Chul;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1305-1306
    • /
    • 2006
  • A monolayer assembly of anthracene-viologen linked thiol ($AMVC_{8}SH$) was fabricated on a gold electrode by self-assembly method. Structural property of the self-assembled monolayers (SAMs) was carried out by optical and electrochemical method. Firstly, we investigated PL spectrum and UV/visible absorption for the optical properties in solution state. Secondly, we determined the characteristics of charge transfer in different electrolyte solutions by electrochemical quartz crystal microbalance (EQCM). From the data, the PL spectrum and UV/visible absorption were observed and the well-defined shape peaks were nearly equal charges during redox reactions and existed to an excellent linear relationship between the scan rates and existed to currents. The mass change was determined during redox reaction. The mass change behavior of SAMs was not only governed by the mobility of the ion in the viologen but the valence of the ion in the electrolyte solution.

  • PDF

Fabrication and characterization of CdS film, nanowires and nanobelts grown by VPE

  • Son, Moon-A;Lee, Dong-Jin;Kang, Tae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.69-69
    • /
    • 2010
  • The research is the structural and optical characteristics of the Cadmium Sulfide(CdS) film, nanowires and nanobelts grown on the $Al_2O_3$ substrate using the vapor phase epitaxy method. The field-emission scanning electron microscopy(FE-SEM) were used to identify the shape of the surface of the nanostructures and x-ray diffraction(XRD) and transmission electron microscopy (TEM) were used to evaluate the structural characterisitcs. As a result, the XRD was confirmed the CdS peak and the substrate peak and TEM showed single crystals with wurtzite hexagonal structure on the nanostructures. As for the optical characteristic of the nanostructures, photoluminescence(PL) and micro-raman spectrum were measured. The PL measurements confirmed the emission peak related bound exciton to neutral donor($D^0X$) peak and free exciton(FX) peak. The micro-raman spectrum showed that the peak of the nanostructures were similar to the pure crystalline CdS peak and each peak were overtone of LO phonon of the hexagonal CdS of the longitudinal optical(LO) phonon mode. Therefore, it is confirmed that the CdS nanostructures grown in this research have superior crystallinity.

  • PDF

Optical properties of HgTe and HgTe/CdTe core-shell structured nanocrystals (HgTe와 HgTe/CdTe core-shell 구조의 나노입자의 광학적 특성 비교)

  • Park, Byoung-Jun;Kim, Hyun-Suk;Cho, Kyoung-Ah;Kim, Jin-Hyong;Lee, Joon-Woo;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.56-59
    • /
    • 2004
  • HgTe and HgTe/CdTe core-shell structured nanocrystals(NCs) were synthesized in aqueous solution by colloidal method. HgTe and HgTe/CdTe NCs structure showed very similar XRD patterns because of the same lattice constant and crystal structure of both samples. The absorption and photoluminescence(PL) spectrum of the synthesized HgTe NCs revealed the strong exitonic peak in the IR region. The PL spectrum of HgTe/CdTe NCs have the intense peak in about 700nm shorter than that of HgTe by 400nm. The photocurrent measurement of colloidal NCs are performed using He-Ne laser for light source. The photocurrent of HgTe NCs shows the instant increased current response to light, but HgTe/CdTe NCs revealed a decreased current when lighted to the sample. In the vacuum condition, it shows reverse result that current increased under the illumination of light and it is thought that the molecules like the hydro-oxygen gas in the air give an important effect on the current mechanism.

  • PDF

Synthesis and optical properties of star-like ZnO nanostructures grown on with carbon catalyst (탄소 촉매에 의하여 성장된 별-모양 ZnO 나노 구조물의 합성과 광학적 특성)

  • Jung, Il-Hyun;Chae, Myung-Sic;Lee, Ui-Am
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.1-6
    • /
    • 2010
  • Star-like ZnO nanostructures were grown on SI(100) substrates with carbon(C) catalyst by employing vapor-solid(VS) mechanism. The morphologies and structure of ZnO nanostructures were investigated by Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and Raman spectrum, Photoluminescence spectrum. The results demonstrated that the as-synthesized products consisted of star-like ZnO nanostructure with hexagonal wurtzite phase. Nanostructures grown at 1100 were mainly star-like in structure with diameters of 500 nm. The legs of the star-like nanostructures were preferentially grown up along the [0001] direction. A vapor.solid (VS) growth mechanism was proposed to explain the formation of the star-like structures. Photoluminescence spectrum exhibited a narrow emission band peak around 380 nm and a broad one around 491 nm. Raman spectrum of the ZnO nanostructures showed oxygen defects in ZnO nanostructures due to the existence of Ar gas during the growth process, leading to the dominant green band peak in the PL spectrum.

Preparation and Properties of Eu3+ Doped Y2O3 Nanoparticles with a Solvothermal Synthesis Using the Ethylene Glycol (에틸렌 글리콜을 이용하여 용매열 합성으로 Eu3+가 도핑된 Y2O3 나노 입자의 제조 및 특성)

  • 신수철;조태환
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.7
    • /
    • pp.709-714
    • /
    • 2003
  • Eu doped $Y_2$ $O_3$ nanoparticles were prepared with the solvothermal synthesis using the ethyleneglycol solvent at 20$0^{\circ}C$ for 3-5 h and then annealed in air at 1000-140$0^{\circ}C$ for 2-4 h. The X-ray diffraction pattern of annealed crystals at 100$0^{\circ}C$ for 2 h could be indexed as pure cubic cell of $Y_2$ $O_3$ phase with lattice parameters a=10.5856 $\AA$ which is very close to the reported data (JCPDS Card File, 41-1105 a=10.6041 $\AA$). Average size of prepared phosphor particles have about 100 nm, which were spherical morphology. The phosphor particle sizes decreased and the emission intensity increased at the annealing temperature. Though PL spectrum analysis, the 3% Eu doped $Y_{2-x}$ $O_3$:E $u_{x}$ $^{3+}$(x=0.06) phosphor showed the excitation spectrum at 250 nm wavelength and the maximum emission spectrum at 611 nm wavelength.