• Title/Summary/Keyword: PL spectra

Search Result 372, Processing Time 0.039 seconds

Photoluminescence Tuning of Porous Silicon by Electrochemical Etching in Mixed Electrolytes

  • Lee, Ki-Hwan;Jeon, Ki-Seok;Lee, Seung-Koo;Choi, Chang-Shik
    • Journal of Photoscience
    • /
    • v.10 no.3
    • /
    • pp.257-261
    • /
    • 2003
  • We have systematically studied the evolution of the photoluminescence(PL) tuning of porous silicon(PS) by electrochemical etching in various mixed electrolytes. The electrolytes employed as an etchants were mixtures of HF:CH$_3$COOH:HNO$_3$:C$_2$H$\_$5/OH solutions where the composition ratios (%) were varied from 10:1.98:0:88.02 to 10: 1.98:8.4:79.62 under constant concentration of HF and CH$_3$COOH with a total volume of 100 ml. Changes in the surface morphology of the samples caused by variations in the etching process were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). After samples are etched in various mixed electrolytes, FTIR analyses show that there is the non-photoluminescent state and the photoluminescent state simultaneously. The PL spectra show the PL tuning in the ranging from 560 to 700 nm with the increase of HNO$_3$ concentration. An analysis of the subsequent PL relaxation mechanism was carried out by time-correlated single photon counting (TCSPC) method. Based on experimental results, it is assumed that a red shift of the main PL peak position is related to the HNO$_3$ activated formation of silicon oxygen compounds. Therefore, the use of electrolyte mixtures with composition ratios can be obtained adequate and reproducible results for PL tuning.

  • PDF

Optical characteristics of p-type ZnO epilayers doped with Sb by metalorganic chemical vapor deposition

  • Kwon, B.J.;Cho, Y.H.;Choi, Y.S.;Park, S.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.122-122
    • /
    • 2010
  • ZnO is a widely investigated material for the blue and ultraviolet solid-state emitters and detectors. It has been promoted due to a wide-band gap semiconductor which has large exciton binding energy of 60 meV, chemical stability and low radiation damage. However, there are many problems to be solved for the growth of p-type ZnO for practical device applications. Many researchers have made an efforts to achieve p-type conductivity using group-V element of N, P, As, and Sb. In this letter, we have studied the optical characteristics of the antimony-doped ZnO (ZnO:Sb) thin films by means of photoluminescence (PL), PL excitation, temperature-dependent PL, and time-resolved PL techniques. We observed donor-to-acceptor-pair transition at about 3.24 eV with its phonon replicas with a periodic spacing of about 72 meV in the PL spectra of antimony-doped ZnO (ZnO:Sb) thin films at 12 K. We also investigate thermal activation energy and carrier recombination lifetime for the samples. Our result reflects that the antimony doping can generate shallow acceptor states, leading to a good p-type conductivity in ZnO.

  • PDF

A Study of Be Levels in p-GaSb:Be/GaAs Epitaxial Layers (p-GaSb:Be/GaAs 에피층의 Be 준위에 관한 연구)

  • Noh, S.K.;Kim, J.O.;Lee, S.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.2
    • /
    • pp.135-140
    • /
    • 2011
  • By investigating photoluminescence (PL) spectra (20 K) of undoped and Be-doped p-type GaSb/GaAs epilayers, the origin has been analyzed by the change due to doping density. We have observed that the PL peak shifts to higher energy and the full-width half-maximum (FWHM) decreases with increasing the doping density below ${\sim}10^{17}cm^{-3}$, contrasted to shift to low energy and increasing FWHM above the density of ${\sim}10^{17}cm^{-3}$. From the variation of the integrated PL intensities of three peaks dissolved by Gaussian fit, it has been analyzed that, as the density increases, the $Be[Be_{Ga}]$ acceptor level (0.794 eV) reduces, whereas the intrinsic defect of $A[Ga_{Sb}]$ (0.778 eV) enhances together with a new $Be^*$ level (0.787 eV) locating between A and Be. We have discussed that it is due to coexistence of the Be acceptor level (${\Delta}E=16meV$) and the complex level (${\Delta}E=23meV$), $Be^*[Ga_{Sb}-Be_{Ga}]$combined by Be and A, in Be-doped p-GaSb, and that the level density of $Be[Be_{Ga}]$ may be reduced above ${\sim}10^{17}cm^{-3}$.

Optical properties of InAs quantum dots with different size (InAs 양자점의 크기에 따른 분광학적 특성)

  • 권영수;임재영;이철로;노삼규;유연희;최정우;김성만;이욱현;류동현
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4A
    • /
    • pp.450-455
    • /
    • 1999
  • We present Photoluminescence (PL) and Atomic Force Microscopy (AFM) image on InAs quantum dots (QDs) having different size which grown by Molecualr Beam Epitaxy (MBE). For different size QDs, analysis of the AFM profiles show that the density of QDs was the maximum value $(1.1\times10^{11}\textrm{/cm}^2)$ at 2.0 ML. In the spectra of QDs, it is found that the peak energy decreases with increasing dot size due to the effect of quantum confinement. Temperature dependence of PL intensities show that the PL is quenching and Red shift as the temperature increase. The FWHM range of 20K~180K is narrowing with increasing temperature. When temperature is over 180K, the line-width starts to in creases with increasing temperature. At last, temperature dependence of the integrated intensities were fit using the Arrehenius-type function for the activation energy. Fit value of the activation energy was increased with increasing QDs-size.

  • PDF

Changing the sp2 Carbon Clusters in Graphene Oxide During Exfoliation

  • Ahn, Sung Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.49-52
    • /
    • 2015
  • The change of the chemical structure of graphene oxide (GO) was investigated by periodical sampling of GO during exfoliation by using a sonicator. A significant amount of GO was exfoliated during up to 10 hr of sonication. Raman and Fourier transform infrared spectroscopy revealed a continuous increase of the G/D or C=C/C=O peak ratio of GO, as the sonication time increases. The photoluminescence (PL) intensity of each GO sample also decreased as a function of the sonication time. PL excitation spectra with three major peaks indicate that the sizes of $sp^2$ carbon clusters were enlarged by longer sonication. In addition, new excitation at around 300 nm proves the existence of newly developed small clusters of $sp^2$ carbons as the sonication time increased.

Correlation Between Deposition Parameters and Photoluminescence of ZnO Semiconducting Thin Films by Pulsed laser Deposition (PLD증착 변수에 따른 II-VI족 화합물 ZnO 반도체 박막의 발광 특성 연구)

  • 배상혁;윤일구;서대식;명재민;이상렬
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.3
    • /
    • pp.246-250
    • /
    • 2001
  • ZnO thin films for light emission device have been deposited on sapphire and silicon substrates by pulsed laser deposition technique(PLD). A Nd:YAG laser was used with the wavelength of355 nm. In order to investigate the emission properties of ZnO thin films, Pl measurements with an Ar ion laser a light source using an excitation wavelength of 351 nm and a power of 100 mW are used. All spectra were taken at room temperature by using a grating spectrometer and a photomultiplier detector. ZnO exhibited Pl bands centers around 390, 510 and 640 nm, labeled near ultra-violet(UV), green and orange bands. Structural properties of ZnO thin films are analyzed with X-ray diffraction(XRD).

  • PDF

Structural and Opical Properties of ZnO Thin Films with Different Temperature of Sol-gel Solution (Sol-gel 용액의 온도변화에 따른 ZnO 박막의 구조적, 광학적 특성)

  • Park, Hyeong-Gil;Nam, Gi-Ung;Yun, Hyeon-Sik;Kim, So-A-Ram;Im, Jae-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.137-138
    • /
    • 2012
  • ZnO 박막을 Sol-gel용액을 이용한 스핀코팅 방법으로 석영기판 위에 성장하였고 Sol-gel 용액의 온도 변화에 따른 구조적, 광학적 특성을 분석하였다. ZnO 박막의 구조적, 광학적 특성을 조사하기 위해 field-emission scanning electron microscopy, X-ray diffraction (XRD), photoluminescence (PL), 그리고 ultraviolet-visible (UV) spectroscopy을 사용하였다. PL 분석에서 ZnO 박막은 orange 계열의 발광을 하였으며, PL spectra는 3.3 eV 부근의 near-band edge emission (NBE) 피크와 2.0 eV 부근의 deep-level emission (DLE) 피크로 이루어져있다. 모든 sol-gel 용액 온도에서, DLE 피크가 NBE 피크보다 더 우세하고 이 DLE 피크는 sol-gel 용액의 온도가 증가함에 따라 점점 증가하다가 감소하는 것을 알 수 있다. 이런 DLE 피크는 산소 공공, 아연 공공, 침입형 산소, 침입형 아연 등과 같은 결함에 의한 것이며, ZnO 박막은 sol-gel 용액의 온도에 따라 결함의 특성이 변화하였다.

  • PDF

Light emission properties of ZnO thin films grown by pulsed laser deposition (펄스 레이저 증착법으로 제작한 ZnO 박막의 발광 특성)

  • 배상혁;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.539-542
    • /
    • 2000
  • ZnO thin films for light emission device have been deposited on sapphire and silicon substrates by pulsed laser deposition technique(PLD). A Nd:YAG laser was used with the wavelength of 355 nm. In order to investigate the emission properties of ZnO thin films, PL measurements with an Ar ion laser as a light source using an excitation wavelength of 351 nm and a power of 100 mW are used. All spectra were taken at room temperature by using a grating spectrometer and a photomultiplier detector. ZnO exhibited PL bands centered around 390, 510 and 640 nm, labeled near ultra-violet (UV), green and orange bands. Structural properties of ZnO thin films are analized with X-ray diffraction (XRD).

  • PDF

Influence of annealing on the properties of ZnO/MgO films (ZnO/MgO 막의 열처리에 따른 물성 변화)

  • Choi, Mu-Hee;Ma, Tae-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.151-152
    • /
    • 2005
  • ZnO films were deposited on MgO substrates (ZnO/MgO) by ultrasonic spray pyrolysis. Substrate temperature varied from $250^{\circ}C$ to $350^{\circ}C$. The crystallographic properties and surface morphologies of the ZnO/MgO films were studied by X ray diffraction and scanning electron microscopy. The properties of photoluminescence (PL) for the films were investigated by dependence of PL spectra on the substrate temperature and the annealing temperature. The ZnO/MgO films prepared at $350^{\circ}C$ showed the strongest UV emission peak at 18 K and 300 K among the films in this study.

  • PDF

Synthesis of Hole Transport Materials for Organic Light Emitting Device (유기발광디바이스용 정공수송재료의 합성)

  • Chung, Pyung-Jin;Cho, Min-Ju
    • Korean Journal of Materials Research
    • /
    • v.15 no.7
    • /
    • pp.448-452
    • /
    • 2005
  • This study was based on organic electroluminescence display. Especially, TPD and $\alpha-NPD$ for the hole transport materials were synthesized by Ullmann reaction. This reaction was conducted between 3­methylphenylamine, 1-naphthylamine and 4,4'-diiodobiphenyl in toluene containing CuCl catalyst and KOH base. The structural property of reaction products were analyzed by FT-IR, $^1H-NMR$ spectroscopy, and thermal stability, reactivity and PL property were analyzed by melting point, yield and emission spectrum, respectively. The photoluminescence spectra of a pure TPD and $\alpha-NPD$ were observed at approximately 416nm and 438nm respectively. In this study, it was known that the melting point, yield, PL properties of TPD and $\alpha-NPD$ were changed by substituent group of amines.