• Title/Summary/Keyword: PKC-${\delta}$

Search Result 51, Processing Time 0.026 seconds

The Activity of Hypertension-related Protein Kinase C and the Relationship of Physical Therapy (고혈압-연관 단백질 부활효소 C의 활성과 물리치료의 상관성)

  • Kim, Jung-Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.20 no.3
    • /
    • pp.61-68
    • /
    • 2008
  • Purpose: Protein kinase C (PKC) is a member of a family of serine/threonine kinases that are activated by diacylglycerol (DG) and PKC stimulants. PKC play a key role in signal transduction, including muscle contraction, cell migration, apoptosis, cell proliferation and differentiation. However, the mechanism relating mitogen-activated protein kinases (MAPKs) and PKC, especially in the volume-dependent hypertensive state, remains unclear. Methods: In the present study, I investigated the relationship between PKC and MAPKs for isometric contraction, PKC translocation, and enzymatic activity from normotensive sham-operated rats (NSR) and aldosterone-analogue deoxycorticosterone acetate (DOCA) hypertensive rats (ADHR). Results: Systolic blood pressure was significantly increased in ADHR than in NSR. Physiological salt solution (PSS)-induced resting tension and the intracellular $Ca^{2+}$ concentration ([$Ca^{2+}{_i}$]) were different in the ADHR and NSR. The expression of PKC$\alpha$, PKC$\beta$II, PKC$\delta$, PKC$\varepsilon$ and PKC$\xi$ were different between the cytoplasmic and membranous fractions. However, expression of the PKC isoforms did not differ for the ADHR and NSR. The use of 12-deoxyphorbol 13-isobutyrate (DPB, a PKC stimulant) induced isometric contraction in $Ca^{2+}$-free medium, which was diminished in muscle strips from ADHR as compared to NSR. Increased vasoconstriction and phosphorylation induced by the use of 1 ${\mu}$M DPB were inhibited by treatment with 10 ${\mu}$M PD098059 and 10 ${\mu}$M SB203580, inhibitors of extracellular-regulated protein kinase 1/2 (ERK1/2) and p38 MAPK from ADHR, respectively. Conclusion: These results suggest that the development of aldosterone analogue-induced hypertension is associated with an altered blood pressure, resting tension, [$Ca^{2+}{_i}$], and that the $Ca^{2+}$-independent contraction evoked by PKC stimulants is due to the activation of ERK1/2 and p38 MAPK in volume-dependent hypertension. Therefore, it is suggested that PKC activity affects volume-dependent hypertension and the need to develop cardiovascular disease-specialized physical therapy.

  • PDF

Selective regulation of osteoclast adhesion and spreading by PLCγ/PKCα-PKCδ/RhoA-Rac1 signaling

  • Kim, Jin-Man;Lee, Kyunghee;Jeong, Daewon
    • BMB Reports
    • /
    • v.51 no.5
    • /
    • pp.230-235
    • /
    • 2018
  • Bone resorption by multinucleated osteoclasts is a multistep process involving adhesion to the bone matrix, migration to resorption sites, and formation of sealing zones and ruffled borders. Macrophage colony-stimulating factor (M-CSF) and osteopontin (OPN) have been shown to be involved in the bone resorption process by respective activation of integrin ${\alpha}v{\beta}3$ via "inside-out" and "outside-in" signaling. In this study, we investigated the link between signal modulators known to M-CSF- and OPN-induced osteoclast adhesion and spreading. M-CSF- and OPN-induced osteoclast adhesion was achieved via activation of stepwise signals, including integrin ${\alpha}v{\beta}3$, $PLC{\gamma}$, $PKC{\delta}$, and Rac1. Osteoclast spreading induced by M-CSF and OPN was shown to be controlled via sequential activation, consistent with the osteoclast adhesion processes. In contrast to osteoclast adhesion, osteoclast spreading induced by M-CSF and OPN was blocked via activation of $PLC{\gamma}/PKC{\alpha}/RhoA$ signaling. The combined results indicate that osteoclast adhesion and spreading are selectively regulated via $PLC{\gamma}/PKC{\alpha}-PKC{\delta}/RhoA-Rac1$ signaling.

Lysophosphatidic acid enhances breast cancer cells-mediated osteoclastogenesis

  • Nam, Ju-Suk;Sharma, Ashish Ranjan;Nguyen, Lich Thi;Jagga, Supriya;Lee, Yeon-Hee;Sharma, Garima;Lee, Sang-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.5
    • /
    • pp.503-511
    • /
    • 2018
  • Lysophosphatidic acid (LPA) is known to play a critical role in breast cancer metastasis to bone. In this study, we tried to investigate any role of LPA in the regulation of osteoclastogenic cytokines from breast cancer cells and the possibility of these secretory factors in affecting osteoclastogenesis. Effect of secreted cytokines on osteoclastogenesis was analyzed by treating conditioned media from LPA-stimulated breast cancer cells to differentiating osteoclasts. Result demonstrated that IL-8 and IL-11 expression were upregulated in LPA-treated MDA-MB-231 cells. IL-8 was induced in both MDA-MB-231 and MDA-MB-468, however, IL-11 was induced only in MDA-MB-231, suggesting differential LPARs participation in the expression of these cytokines. Expression of IL-8 but not IL-11 was suppressed by inhibitors of PI3K, NF-kB, ROCK and PKC pathways. In the case of PKC activation, it was observed that $PKC{\delta}$ and $PKC{\mu}$ might regulate LPA-induced expression of IL-11 and IL-8, respectively, by using specific PKC subtype inhibitors. Finally, conditioned Medium from LPA-stimulated breast cancer cells induced osteoclastogenesis. In conclusion, LPA induced the expression of osteolytic cytokines (IL-8 and IL-11) in breast cancer cells by involving different LPA receptors. Enhanced expression of IL-8 by LPA may be via ROCK, PKCu, PI3K, and NFkB signaling pathways, while enhanced expression of IL-11 might involve $PKC{\delta}$ signaling pathway. LPA has the ability to enhance breast cancer cells-mediated osteoclastogenesis by inducing the secretion of cytokines such as IL-8 and IL-11.

Regulation of BAD Protein by PKA, PKCδ and Phosphatases in Adult Rat Cardiac Myocytes Subjected to Oxidative Stress

  • Cieslak, Danuta;Lazou, Antigone
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.224-231
    • /
    • 2007
  • $H_2O_2$, as an example of oxidative stress, induces cardiac myocyte apoptosis. Bcl-2 family proteins are key regulators of the apoptotic response while their functions can be regulated by post-translational modifications including phosphorylation, dimerization or proteolytic cleavage. In this study, we examined the role of various protein kinases in regulating total BAD protein levels in adult rat cardiac myocytes undergoing apoptosis. Stimulation with 0.1 mM $H_2O_2$, which induces apoptosis, resulted in a marked down-regulation of BAD protein, which is attributed to cleavage by caspases since it can be restored in the presence of a general caspase inhibitor. Inhibition of PKC, p38-MAPK, ERK1/2 and PI-3-K did not influence the reduced BAD protein levels observed after stimulation with $H_2O_2$. On the contrary, inhibition of PKA or specifically $PKC{\delta}$ resulted in up-regulation of BAD. Decreased caspase 3 activity was observed in $H_2O_2$ treated cells after inhibition of PKA or $PKC{\delta}$ whereas inhibition of PKA also resulted in improved cell survival. Furthermore, addition of okadaic acid to inhibit selected phosphatases resulted in enhanced BAD cleavage. These data suggest that, during oxidative stress-induced cardiac myocyte apoptosis, there is a caspase-dependent down-regulation of BAD protein, which seems to be regulated by coordinated action of PKA, $PKC{\delta}$ and phosphatases.

Immunohistochemical localization of protein kinase C and nitric oxide synthase in the vomeronasal organ of the horse (말 서골코기관에서 protein kinase C 및 nitric oxide synthase의 면역조직학적 관찰)

  • Lee, Kwanghyup;Ahn, Meejung;Lee, Yongduk;Ha, Theyoung;Kim, Heeseok;Shin, Thekyun
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.3
    • /
    • pp.269-273
    • /
    • 2001
  • The expression of protein kinase C(PKC) isoforms and nitric oxide synthase (NOs) isoforms was studied in the equine vomeronasal organ(VNO), a pheromone receptor organ, using immunohistochemistry. All PKC isoforms including PKC $\alpha$, ${\beta}I$, $\delta$, and $\theta$ were detected in the supporting cells, sensory receptor cells, and basal sensory epithelial cells, while constitutive PKC $\alpha$ and ${\beta}I$ were stained more intensely than novel PKC $\delta$ and ${\theta}$. There was also a varying degree of immunostaining for PKCs in the glandular acini and VNO nerve. Constitutive neuronal and endothelial NOSs, and inducible NOS were detected in the VNO sensory epithelia. There was intense immunoreactivity for endothelial NOS in the VNO sensory epithelia but weak reactivity for neuronal NOS, while inducible NOS showed little immunoreactivity in the adjacent section. These findings suggest that both PKCs and NOSs may be involved in the process of pheromone reception in the horse. Constitutive isoforms of these enzymes may play a more important role in signal trasduction in the VNO of the horse.

  • PDF

Modulation of $GABA_A$ Receptor by Protein Kinase C in Autonomic Major Pelvic Ganglion Neurons

  • Choi, Yeun-Jong;Cha, Seung-Kyu;Kim, Dae-Ran;Kong, In-Deok
    • Biomedical Science Letters
    • /
    • v.14 no.2
    • /
    • pp.69-76
    • /
    • 2008
  • ${\gamma}$-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system, and its actions are mediated by subtypes of GABA receptors named as $GABA_A$, $GABA_B,\;and\;GABA_C,\;GABA_A$, receptor consisting of ${\alpha},\;{\beta},\;{\gamma}\;and\;{\delta}$ subunits is a heterooligomeric ligand-gated chloride channel. This study was performed to investigate regulation of $GABA_A$ receptor by protein kinase C(PKC). Ion currents were recorded using gramicidine-perforated patch and whole cell patch clamp. mRNA encoding the subunits of PKC expressed in major pelvic ganglion (MPG) neurons was detected by using RT-PCR. The GABA-induced inward current was increased by PKC activators and decreased by PKC inhibitors, respectively. These effects were not associated with intracellular $Ca^{2+}$ and GAG (1-oleoyl-2-acetyl-sn-glycerol), a membrane permeable diacylglycerol (DAG) analogue. These results mean that the subfamily of PKC participating in activation of $GABA_A$ receptor would be an atypical PKC (aPKC). Among theses, ${\xi}$ isoform of aPKC was detected by RT-PCR. Taking together, we suggest that excitable $GABA_A$ receptor in sympathetic MPG neuron seemed to be regulated by aPKC, particular in ${\xi}$ isoform. The regulatory roles of PKC on excitatory $GABA_A$ receptors in sympathetic neurons of MPG may be an important factor to control the functional activity of various pelvic organs such as bowel movement, micturition and erection.

  • PDF

Secretion of MCP-1, IL-8 and IL-6 Induced by House Dust Mite, Dermatophagoides pteronissinus in Human Eosinophilic EoL-1 Cells

  • Lee, Ji-Sook;Kim, In-Sik;Yun, Chi-Young
    • Animal cells and systems
    • /
    • v.13 no.4
    • /
    • pp.391-397
    • /
    • 2009
  • The house dust mite (Dermatophagoides pteronissinus) is an important factor in triggering allergic diseases. The function of eosinophils, particularly in the production of cytokine or chemokine, is critical in understanding the pathogenesis of inflammatory diseases. In this study, we examined whether D. pteronissinus extract (DpE) induces the expression of monocyte chemotactic protein 1 (MCP-1)/CCL2, IL-8/CXCL8, and IL-6 that mediate in the infiltration and activation of immune cells and in its signaling mechanism in the human eosinophilic cell line, EoL-1. DpE increased the mRNA and protein expression of MCP-1, IL-8, and IL-6 in a time- and dose-dependent course in EoL-1 cells. In our experiments using signal-specific inhibitors, we found that the increased expression of MCP-1, IL-8, and IL-6 due to DpE is associated with Src family tyrosine kinase and protein kinase C $\delta$ (PKC $\delta$). In addition, the activation of extracellular signal-regulated kinase (ERK) is required for MCP-1 and IL-8 expression while p38 mitogen-activated protein kinase (MAPK) is involved in IL-6 expression. DpE induced the phosphorylation of ERK and p38 MAPK. PP2, an inhibitor of Src family tyrosine kinase, and rottlerin, an inhibitor of PKC $\delta$, blocked the activation of ERK and p38 MAPK. DpE induces the activation of ERK and p38 MAPK via Src family tyrosine kinase and PKC $\delta$ for MCP-1, IL-8, or IL-6 production. Increased cytokine release due to the house dust mite and the characterization of its signal transduction may be valuable in understanding the eosinophil-related pathogenic mechanism of inflammatory diseases.

Mycobacterium tuberculosis-induced Expression of Interleukin-1 Beta is Mediated Via Protein Kinase C Signaling Pathway

  • Cho, Jang-Eun;Lee, Kyung-Hong;Son, Sin-Jee;Park, Sang-Jung;Lee, Hye-Young;Kim, Yoon-Suk
    • Biomedical Science Letters
    • /
    • v.16 no.2
    • /
    • pp.119-122
    • /
    • 2010
  • Interleukin-1${\beta}$ $(IL-1{\beta})$ is one of the key proinflammatory cytokines and it plays an important role for the antimycobacterial host defense mechanisms. In this study, we examined Mycobacterium tuberculosis (MTB)-stimulated induction of IL-1${\beta}$ and evaluated the associated signal transduction pathways. In PMA-differentiated THP-1 cells, MTB infection increased mRNA expression of IL-$1{\beta}$ in a dose-dependent manner. The expression of IL-1${\beta}$ mRNA began to be induced at 1.5 h after infection, and induced expression of IL-1${\beta}$ was retained for 48 h after MTB infection. The increase in expression of IL-1${\beta}$ caused by MTB was reduced in cells treated with Ro-31-8425 (an inhibitor of PK$C{\alpha}$, ${\beta}I$, ${\beta}II$, ${\gamma}$, ${\varepsilon}$) or PD98059 (an inhibitor of MEK1), meanwhile, pre-treatment with $G\ddot{o}6976$ (an inhibitor of $Ca^{2+}$ dependent PK$C{\alpha}$ and PK$C{\beta}I$) or Rottlerin (an inhibitor of PK$C{\delta}$) has no effect on MTB-induced expression of $IL-1{\beta}$ mRNA. These results show that the expression of $IL-1{\beta}$ mRNA caused by MTB may be mediated via MEK1 and PKC isoforms including PK$C{\beta}II$, $PKC{\gamma}$, or $PKC{\varepsilon}$. Further studies are required to determine whether other PKC isoforms $(PKC {\eta},\;{\theta},\;{\varepsilon},\;and\;{\lambda}/{\iota})$, except $PKC{\delta}$, $PKC{\alpha}$, and $PKC{\beta}I$, are also involved in $IL-1{\beta}$ mRNA expression after mycobacterial infection.

Effects of PCB Congeners in Rodent Neuronal Cells in Culture

  • Kim, Sun-Young;Yang, Jae-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.1
    • /
    • pp.9-15
    • /
    • 2005
  • We attempted to analyze the mechanism of polychlorinated biphenyl (PCB)-induced neurotoxicity and identify the target molecules in the neuronal cells for PCBs.Since the developing neuron is particularly sensitive to PCB-induced neurotoxicity, we isolated cerebellar granule cells derived from 7-day old Sprague Dawley (SD) rats and grew cells in culture for additional 7 days to mimic PND-14 conditions. Only non-coplanar PCBs at a high dose showed a significant increase of total protein kinase C (PKC) activity at phobol 12,13-dibutyrate ([$^3M$]PDBu) binding assay, indicating that non-coplanar PCBs are more neuroactive than coplanar PCBs in neuronal cells. PKC isozymes were immunoblotted with the selected monoclonal antibodies. PKC-${\alpha}$, ${\delta}$, and ε were activated with non-coplanar PCB exposure. Receptor for activated C kinase-1 (RACK-1), anchoring protein for activated PKC, was more induced with exposure to coplanar PCBs than non-coplanar PCBs. Reverse transcription PCR (RT-PCR) analysis showed induction of neurogranin (RC-3) and growth associated protein-43 (GAP-43) mRNA with non-coplanar PCBs. The results indicate that these factors may be useful biomarkers for differentiating non-coplanar PCBs from coplanar PCBs. The present study demonstrated that non-coplanar PCBs are more neuroactive congeners than coplanar PCBs.

The Role of S100A8 and S100A9 in Differentiation of Human Eosinophilic Leukemia Cells, EoL-1

  • Kim, In Sik;Gu, Ayoung;Lee, Ji-Sook
    • Biomedical Science Letters
    • /
    • v.23 no.1
    • /
    • pp.44-47
    • /
    • 2017
  • S100A8 and S100A9 are associated with myeloid cell differentiation, chemotactic activities, adhesion of neutrophils, and apoptosis. In this study, we investigated the contribution of S100A8 and S100A9 to differentiation of the human eosinophilic leukemia cell line, EoL-1. S100A8 and S100A9 increased the number of vacuole per one cell and the protein expression of EPO and MBP. Rottlerin, an inhibitor of protein kinase C delta ($PKC{\delta}$), inhibited the EoL-1 cell differentiation induced by S100A8 and S100A9. These results suggest that S100A8 and S100A9 may regulate the differentiation of eosinophilic progenitors. Moreover, these findings may shed light on elucidation of eosinophil differentiation due to S100 proteins.