• Title/Summary/Keyword: PIV Technique

Search Result 318, Processing Time 0.023 seconds

Simultaneous Measurement of Velocity and Concentration Field in a Stirred Mixer Using PIV/LIF Technique (PIV/LIF기법에 의한 교반혼합기 내의 속도장과 농도장 동시 측정)

  • Jeong, Eun-Ho;Yoon, Sang-Youl;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.504-510
    • /
    • 2003
  • Simultaneous measurements of turbulent velocity and concentration field in a stirred mixer tank are carried out by using PIV/LIF technique. Instantaneous velocity fields are measured with a 1K$\times$1K CCD camera adopting the frame straddle method while the concentration fields are obtained by measuring the fluorescence intensity of Rhodamine B tracer excited by the second pulse of Nd:Yag laser light. Image distortion due to the camera view-angle is compensated by a mapping function. It is found that the general features of the mixing pattern are quite dependent on the local flow characteristics during the rapid decay of mean concentration. However, the small scale mixing seems to be independent on the local turbulent velocity fluctuation.

Experimental Study on Flow Characteristics of ERF Between Two Parallel-Plate Electrodes by using PIV Technique (평행평판 전극사이에서 PIV 기법을 이용한 ER 유체의 유동특성에 관한 실험적 연구)

  • Chang Tae-Hyun;Chang Ki-Won
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.103-106
    • /
    • 2003
  • An experimental investigation was peformed to study the characteristics of ER(Electro-Rheological) fluid water flow in a horizontal rectangular tube with or without D.C volatage. To determine some characteristics of the ER flow, 2D PIV(Particle Image Velocimetry) technique is employed for velocity measurement. This research found the mean velocity distribution with 0 kV/mm, 1.0kV/mm and 1.5kV/mm for Re = 0, 0.62, 1.29 and 2.26. When the strength of the electric field increased, the claster of ERF are clearly strong along the test tube and the flow rate decreased.

  • PDF

Review of Experimental Studies on Swirling Flow in the Circular Tube using PIV Technique

  • Chang, Tae-Hyun;Nah, Do-Baek;Kim, Sang-Woo
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.1
    • /
    • pp.21-28
    • /
    • 2009
  • The study of swirling flow is of technical and scientific interest because it has an internal recirculation field, and its tangential velocity is related to the curvature of streamline. The fluid flow for tubes and elbow of heat exchangers has been studied largely through experiments and numerical methods, but studies about swirling flow have been insufficient. Using the particle image velocimetry(PTV) method, this study found the time averaged velocity distribution with swirl and without swirl along longitude sections and the results appear to be physically reasonable. In addition, streamwise mean velocity distribution was compares with that of other. Furthermore, other experimental investigation was performed to study the characteristics of turbulent water flow in a horizontal circular tube by using liquid crystal. 2D PIV technique is employed for velocity measurement and liquid crystal is used for heat transfer experiments in water. Temperature visualization was made quantitatively by calibrating the colour of the liquid crystal versus temperature using various approaches.

Observing Thermal Counterflow in He II by the Particle Image Velocimetry Technique

  • Van Sciver S. W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.2
    • /
    • pp.1-6
    • /
    • 2005
  • The Particle Image Velocimetry (PIV) technique can be used to obtain a whole-field view of thermal counterflow velocity profile in He II. Using commercially available microspheres, we have been able to visualize the normal fluid velocity in He II thermal counterflow; however, the measured velocities are less than predicted from the two fluid model. None the less, the PIV is a useful tool for observing the counterflow field in He II flow, particularly where the flow is complex as occurs through channel constrictions or around bluff objects. The present paper shows recent results using PIV to observe He II counterflow. Two cases are discussed: 1D channel flow and turbulent flow around a circular cylinder.

Flow Pattern around Floating Breakwater Using PIV Technique

  • Suh, Sung-Bu;Jung, Kwang-Hyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.11-20
    • /
    • 2010
  • The purpose of this study is the investigation of the wave interaction with the rectangular floating breakwater. The flow profile obtained by PIV technique is represented to understand the vortical flow due to the wave interaction with a rectangular floating breakwater in the roll motion and the fixed condition. Also, the transmission coefficients are compared in both conditions over the extensive wave periods, which represent the performance of breakwater to attenuate the incoming waves. These results would be applied to design the floating breakwater having the mooring system to improve its performance for a certain wave period.

Experimental Study on Flow Characteristics of ERF by using PIV Technique (PIV 기법을 이용한 ER 유체의 유동특성에 관한 실험적 연구)

  • 장태현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.116-123
    • /
    • 2004
  • An experimental investigation was performed to study the characteristics of ER (Electro-Rheological) fluid flow in a horizontal rectangular tube with or without D.C volatage. To determine some characteristics of the ER flow. 2D PIV(Particle Image Velocimetry) technique is employed for velocity measurement. This research found the mean velocity distribution with 0 kV/mm. 1.0kV/mm and 1 5kV/mm for Re=0, 0.62, 1.29 and 2.26. When the strength of the electric field increased. the claster of ERF are clearly strong along the test tube and the flow rate decreased.

Flow structures around a three-dimensional rectangular body with ground effect

  • Gurlek, Cahit;Sahin, Besir;Ozalp, Coskun;Akilli, Huseyin
    • Wind and Structures
    • /
    • v.11 no.5
    • /
    • pp.345-359
    • /
    • 2008
  • An experimental investigation of the flow over the rectangular body located in close proximity to a ground board was reported using the particle image velocimetry (PIV) technique. The present experiments were conducted in a closed-loop open surface water channel with the Reynolds number, $Re_H=1.2{\times}10^4$ based on the model height. In addition to the PIV measurements, flow visualization studies were also carried out. The PIV technique provided instantaneous and time-averaged velocity vectors map, vorticity contours, streamline topology and turbulent quantities at various locations in the near wake. In the vertical symmetry plane, the upperbody flow is separated from the sharp top leading edge of the model and formed a large reverse flow region on the upper surface of the model. The flow structure downstream of the model has asymmetric double vortices. In the horizontal symmetry plane, identical separated flow regions occur on both vertical side walls and a pair of primary recirculatory bubbles dominates the wake region.

Spray Breakup Characteristics of LRE Injector (액체로젯엔진 인젝터의 분무 분열특성)

  • Jung, Hun;Kim, Jin-Seok;Kim, Jeong-Soo;Kim, Sung-Cho;Park, Jeong;Jang, Ki-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.157-160
    • /
    • 2007
  • Spray characteristics of an injector employed in liquid rocket engine is investigated by Particle Image Velocimetry and Dual-mode Phase Doppler Anemometry measurements. Instantaneous plane images captured by PIV technique are examined in order to judge a pass-fail criteria of spray injection performance. DPDA technique is also applied in order to measure the velocity and diameter of spray droplets. The eternal objective of this study is to evaluate an injector performance which may be utilized for the design of brand-new ones through the clear understanding of spray characteristics.

  • PDF

On Oil-Water Interface of Oil Layer Contained in Tandem Oil Fences (이중유벽 사이에 가두어진 기름층의 거동특성)

  • Doh D.H.;Hyun B.S.;Choi S.H.;Hong S.H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.1
    • /
    • pp.25-34
    • /
    • 2000
  • A panoramic-PIV technique is employed to characterize the travelling tip vortices and the profile of oil-water Interface in the tandem fence arrangement. Instantaneous as well as time-averaged velocity profiles of the water layer close to the interface were obtained to evaluate the possibility of measuring the shear stress distribution on oil-water interface. It was proven that the present technique could provide some qualify data precise enough to resolve detailed flow structures inside a shear layer formed on oil-water interface provided it is nearly stationary.

  • PDF

Velocity Distribution Measurements in Mach 2.0 Supersonic Nozzle using Two-Color PIV Method (Two Color PIV 기법을 이용한 마하 2.0 초음속 노즐의 속도분포 측정)

  • 안규복;임성규;윤영빈
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.18-25
    • /
    • 2000
  • A two-color particle image velocimetry (PIV) has been developed for measuring two dimensional velocity flowfields and applied to a Mach 2.0 supersonic nozzle. This technique is similar to a single-color PIV technique except that two different color laser beams are used to solve the directional ambiguity problem. A green-color laser sheet (532 nm: 2nd harmonic beam of YAG laser) and a red-color laser sheet (619 nm: output beam from YAG pumped Dye laser using Rhodamine 640) are employed to illuminate the seeded particles. A high resolution (3060${\times}$2036) digital color CCD camera is used to record the particle positions. This system eliminates the photographic-film processing time and subsequent digitization time as well as the complexities associated with conventional image shifting techniques for solving directional ambiguity problem. The two-color PIV also has the advantage that velocity distributions in high speed flowfields can be measured simply and accurately by varying the time interval between two different laser beams due to its high signal-to-noise ratio and thereby less requirement of panicle pair numbers for a velocity vector in one interrogation spot. The velocity distribution in the Mach 2.0 supersonic nozzle has been measured and the over-expanded shock cell structure can be predicted by the strain rate field. These results are compared and analyzed with the schlieren photograph for the velocity distributions and shock location.

  • PDF