• Title/Summary/Keyword: PIV, Microfluidics

Search Result 7, Processing Time 0.024 seconds

Micro- PIV Measurements of Microchannel Flows and Related Problems (마이크로 채널 내부 유동의 Micro-PIV측정과 제반 문제점)

  • Lee Sang-Joon;Kim Guk-bae
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.79-84
    • /
    • 2002
  • Most microfluidic devices such as heat sinks for cooling micro-chips, DNA chip, Lab-On-Chip, and micro pumps etc. have microchannels of various size. Therefore, the design of practical microfluidics demands detail information on flow structure inside the microchannels. However, detail velocity field measurements are rare and difficult to carry out. In addition, as the microfluidics expands, accurate understanding of microscale transport phenomena becomes very important. In this research, micro-PIV system was employed to measure the velocity fields of flow inside a micro-channel. We carried out PIV measurements for several microchannels with varying channels width, inlet and outlet shape, filters, CCD camera and ICCD camera, etc. For effective composition of micro-PIV system, first of all, it is essential to understand optics related with micro-imaging of particles and the particle dynamics encountered in micro-scale channel flows. In addition, it is necessary to find the optimal condition for given experimental environment and? micro-scale flow to be investigated. The problems encountered in measuring velocity field of micro-channel flows are discussed in this paper.

  • PDF

PIV Measurements of the Pressure Driven Flow Inside a T-Shaped Microchannel Junction (T헝 마이크로채널 연결부 압력구동 유동의 PIV계측)

  • Choi Jayho;Lee In-Seop
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.1
    • /
    • pp.75-81
    • /
    • 2003
  • A custom micro-PIV optics assembly has been used to measure the flow fold inside a T-junction of a microchannel. The micro-PIV system consists of microscope objectives of various magnifications, a dichroic cube, and an 8-bit CCD camera. Fluorescent particles of diameters 620 nm have been used with a Nd:YAG laser and color filters. A programmable syringe pump with Teflon tubings were used to inject particle-seeded distilled water into the channel at flow rates of 2.0, 4.0, 6.0 mL/hr. The micro-channels are fabricated with PDMS with a silicon mold, then O$_{2}$ -ion bonded onto a slide glass. Results show differences in flow characteristics and resolution according to fluid injection rates, and magnifications, respectively. The results include PIV data with vector-to-vector distances of 2 $\mu$m with 32 pixel-square interrogation windows at 50$\%$ overlap.

  • PDF

${\mu}-PIV$ Visualization of Flow in Hydrophilic and Hydrophobic Micro-nozzle (친수성 및 소수성 마이크로 노즐 내 유동 ${\mu}-PIV$ 연구)

  • Byun, Do-Young;Kim, Ji-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.15-18
    • /
    • 2006
  • Recently, experimental visualization of microscale fluid transport has attacted considerable attention in designing microelectromechanical systems. Fluid-surface interactions on hydrophobic and hydrophilic surfaces can play a key role in passively controlling microfluidics. Here we investigate the slip boundary condition depending on the surface characteristics; hydrophilic, hydrophobic wettabilities. Using the micro-PIV, velocity profiles are measured in the glass (hydrophilic), PDMS (hydrophobic) microchannels.

  • PDF

Analysis of Flow in a Microchannel Branch by Using Micro-PIV Method (마이크로 PIV를 이용한 마이크로 분지관에서의 유동해석)

  • Yoon, Sang-Youl;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1015-1021
    • /
    • 2004
  • Micro-resolution Particle Image Velocimetry(Micro-PIV) was used to measure the flow in a micro-branch(Micro-Bypass). In this paper, effects of particle lump at the tip of a Micro-branch and difficulties of Micro-PIV measurements for microfluidics with branch passage were described. Micro-bypass was composed of a straight channel(200(100)${\mu}$m width ${\times}$ 80${\mu}$m height) and two branches which has 100(50)${\mu}$m width ${\times}$ 80${\mu}$m height. One of branches was straight and the other was curved. Experiments were performed at three regions along streamwise direction(entrance, middle and exit of branch) and five planes along vertical direction (0, ${\pm}$10, ${\pm}$20 ${\mu}$m) for the range of Re=0.24, 1.2, 2.4. Numerical simulation was done to compare with the measurements and understand the effects of particle lump at the tip of branch. And another fluid(3% poly vinyl Alcohol aqueous solution) were adapted for this study, so there were no particle sticking. In this case, we could get velocity difference between straight and curved branches.

Visualization of Flow and Wetting Transition in PDMS Superhydrophobic Microchannel (PDMS 기반 초소수성 마이크로 채널내의 유동 및 표면 젖음 전이 가시화에 관한 연구)

  • Kim, Ji-Hoon;Hong, Jong-In;Byun, Do-Young;Ko, Han-Seo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.671-674
    • /
    • 2008
  • We investigate the slippage effect in a micro-channel depending on the surface characteristics; hydrophilic, hydrophobic, and super-hydrophobic wettabilities. The micro-scale grooves are fabricated on the vertical wall to make the super-hydrophobic surfaces, which enable us visualize the flow fields near walls and directly measure the slip length. Velocity profiles are measured using micro-particle image velocimetry (Micro-PIV) and compared those in the hydrophilic glass, hydrophobic PDMS, and super-hydrophobic PDMS micro-channels. To directly measure the velocity in the super-hydrophobic micro-channel, the transverse groove structures are fabricated on the vertical wall in the micro-channel. The velocity profile near the wall shows larger slip length and, if the groove structure is high and wide, the liquid meniscus forms curves into the valley so that the wavy flow is created after the grooves.

  • PDF

Flow Near the Meniscus of a Pressure-Driven Water Slug in Microchannels

  • Kim Sung-Wook;Jin Song-Wan;Yoo Jung-Yul
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.710-716
    • /
    • 2006
  • Micro-PIV system with a high speed CCD camera is used to measure the flow field near the advancing meniscus of a water slug in microchannels. Image shifting technique combined with meniscus detecting technique is proposed to measure the relative velocity of the liquid near the meniscus in a moving reference frame. The proposed method is applied to an advancing front of a slug in microchannels with rectangular cross section. In the case of hydrophilic channel, strong flow from the center to the side wall along the meniscus occurs, while in the case of the hydrophobic channel, the fluid flows in the opposite direction. Further, the velocity near the side wall is higher than the center region velocity, exhibiting the characteristics of a strong shear-driven flow. This phenomenon is explained to be due to the existence of small gaps between the slug and the channel wall at each capillary corner so that the gas flows through the gaps inducing high shear on the slug surface. Simulation of the shape of a static droplet inside a cubic cell obtained by using the Surface Evolver program is supportive of the existence of the gap at the rectangular capillary corners. The flow fields in the circular capillary, in which no such gap exists, are also measured. The results show that a similar flow pattern to that of the hydrophilic rectangular capillary (i.e., center-to-wall flow) is always exhibited regardless of the wettability of the channel wall, which is also indicative of the validity of the above-mentioned assertion.

Micro-imaging techniques for evaluation of plastic microfluidic chip

  • Kim, Jung-Kyung;Hyunwoo Bang;Lee, Yongku;Chanil Chung;Yoo, Jung-Yul;Yang, Sang-Sik;Kim, Jin-Seung;Park, Sekwang;Chang, Jun-Keun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.4
    • /
    • pp.239-247
    • /
    • 2001
  • The Fluorescence-Activated Cell Sorter (FACS) is a well-established instrument used for identifying, enumerating, classifying and sorting cells by their physical and optical characteristics. For a miniaturized FACS device, a disposable plastic microchip has been developed which has a hydrodynamic focusing chamber using soft lithography. As the characteristics of the spatially confined sample stream have an effect on sample throughput, detection efficiency, and the accuracy of cell sorting, systematic fluid dynamic studies are required. Flow visualization is conducted with a laser scanning confocal microscopy (LSCM), and three-dimensional flow structure of the focused sample stream is reconstructed from 2D slices acquired at $1\mutextrm{m}$ intervals in depth. It was observed that the flow structure in the focusing chamber is skewed by unsymmetrical velocity profile arising from trapezoidal cross section of the microchannel. For a quantitative analysis of a microscopic flow structure, Confocal Micro-PIV system has been developed to evaluate the accelerated flow field in the focusing chamber. This study proposes a method which defines the depth of the measurement volume using a detection pinhole. The trajectories of red blood cells (RBCs) and their interactions with surrounding flow field in the squeezed sample stream are evaluated to find optimal shape of the focusing chamber and fluid manipulation scheme for stable cell transporting, efficient detection, and sorting

  • PDF