• Title/Summary/Keyword: PIK3C3

Search Result 9, Processing Time 0.04 seconds

Inhibition of Cell Proliferation and Migration by miR-509-3p That Targets CDK2, Rac1, and PIK3C2A

  • Yoon, Sena;Han, Eunji;Choi, Young-Chul;Kee, Honghwan;Jeong, Yongsu;Yoon, Jaeseung;Baek, Kwanghee
    • Molecules and Cells
    • /
    • v.37 no.4
    • /
    • pp.314-321
    • /
    • 2014
  • CDK2 is a key regulator of cell cycle progression. In this study, we screened for miRNAs targeting CDK2 using a luciferase-3'-untranslated region reporter assay. Among 11 hit miRNAs, miR-509-3p reduced CDK2 protein levels and significantly inhibited cancer cell growth. Microarray, Western blotting, and luciferase reporter analyses revealed additional targets of miR-509-3p, including Rac1 and PIK3C2A. Overexpression of miR-509-3p induced G1 cell-cycle arrest and inhibited colony formation and migration. RNAi experiments indicated that the growth-inhibitory effects of miR-509-3p may occur through down-regulation of CDK2, Rac1, and PIK3C2A. Targeting of multiple growth regulatory genes by miR-509-3p may contribute to effective anti-cancer therapy.

Characterization of Phosphoinositide-3-kinase, Class 3 (PIK3C3) Gene and Association Tests with Quantitative Traits in Pigs

  • Kim, J.H.;Choi, B.H.;Lim, H.T.;Park, E.W.;Lee, S.H.;Seo, B.Y.;Cho, I.C.;Lee, J.G.;Oh, S.J.;Jeon, J.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1701-1707
    • /
    • 2005
  • This study deals with the characterization of porcine PIK3C3 and association tests with quantitative traits. PIK3C3 belongs to the class 3 PI3Ks that participate in the regulation of hepatic glucose output, glycogen synthase, and antilipolysis in typical insulin target cells such as those in the such as liver, muscle system, and fat. On the analysis of full-length mRNA sequence, the length of the PIK3C3 CDS was recorded as 2,664 bps. As well, nucleotide and amino acid identities between human and pig subjects were 92% and 99%, respectively. Five SNPs were detected over 5 exons. We performed genotyping by using a SNP C2604T on exon24 for 145 F$_2$ animals (from a cross between Korean native boars and Landrace sows) by PCR-RFLP analysis with Hpy8I used to investigate the relationship between growth and fat depot traits. In the total association analysis, which doesn' consider transmission disequilibrium, the SNP showed a significant effect (p<0.05) on body weight and carcass fat at 30 weeks of age as well as a highly significant effect (p<0.01) on back fat. In an additional sib-pair analysis, C allele still showed positive and significant effects (p<0.05) on back fat thickness and carcass fat. Moreover, the effects of C allele on the means of within-family components for carcass fat and back fat were estimated as 2.76 kg and 5.07 mm, respectively. As a result, the SNP of porcine PIK3C3 discovered in this study could be utilized as a possible genetic marker for the selection of pigs that possess low levels of back fat and carcass fat at the slaughter weight.

Bacterial Overexpression and Denaturing Purification of VPS34-Binding Domain of Beclin 1

  • Baek, Jong-Hyuk;Jung, Juneyoung;Seo, Jeongbin;Kim, Jeong Hee;Kim, Joungmok
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1808-1816
    • /
    • 2016
  • As a scaffolding subunit of the PIK3C3/VPS34 complex, Beclin 1 recruits a variety of proteins to class III phosphatidylinositol-3-kinase (VPS34), resulting in the formation of a distinct PIK3C3/VPS34 complex with a specific function. Therefore, the investigation of a number of Beclin 1 domains required for the protein-protein interactions will provide important clues to understand the PIK3C3/VPS34 complex, of which Beclin1-VPS34 interaction is the core unit. In the present study, we have designed a bacterial overexpression system for the Beclin 1 domain corresponding to VPS34 binding (Vps34-BD) and set up the denaturing purification protocol due to the massive aggregation of Vps34-BD in Escherichia coli. The expression and purification conditions determined in this study successfully provided soluble and functional Vps34-BD.

PIK3CA and AKT Gene Polymorphisms in Susceptibility to Osteosarcoma in a Chinese Population

  • He, Mao-Lin;Wu, Yang;Zhao, Jin-Min;Wang, Zhe;Chen, Ying-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5117-5122
    • /
    • 2013
  • Purpose: To explore the association between PIK3CA and AKT single nucleotide polymorphisms(SNP) and osteosarcoma susceptibility. Methods: TaqMan polymerase chain reaction(PCR) was used to detect the genotypes of SNPs (rs7646409, rs6973569 and rs9866361) in peripheral blood samples from 59 patients with osteosarcoma and from 63 healthy controls. Unconditional logistic regression was used to analyze the correlation between SNPs and osteosarcoma risk. Results: No statistically significant difference was found between osteosarcoma patients and healthy controls in the genotype of AKT rs6973569 (P=0.7). However, after stratified analysis, the genotype AA of AKT rs6973569 carried a higher risk of osteosarcoma metastasis (OR:2.94, 95%CL:1.00-8.59); the difference of rs7646409 genotype distributions between the case and control groups was statistically significant (P=0.032). Taking genotype TT as a reference, the risk of osteosarcoma increased three fold in patients with genotype CC (OR:3.47, 95%CL:1.26-9.56). A statistically significant difference was found between the alleles C and T (P=0.005). Further analysis showed that the risk factor was more pronounced in male patients with Enneking's stage IIB and osteoblastic osteosarcoma. PIK3CA rs9866361 did not fit Hardy-Weinberg equilibrium (P<0.05). Conclusions: Genotype CC in locus PIK3CA rs7646409 may increase the risk of osteosarcoma in the Chinese population.

DNA Microarray Analysis of Methylprednisolone Inducible Genes in the PC12 Cells

  • Choi, Woo-Jin;Choi, Seung-Won;Kim, Seon-Hwan;Kim, Youn;Kwon, O-Yu
    • Biomedical Science Letters
    • /
    • v.15 no.3
    • /
    • pp.261-263
    • /
    • 2009
  • Methylprednisolone is a synthetic glucocorticoid which is usually taken intravenously for many neurosurgical diseases which cause edema including brain tumor, and trauma including spinal cord injury. Methylprednisolone reduces swelling and decreases the body's immune response. It is also used to treat many immune and allergic disorders, such as arthritis, lupus, psoriasis, asthma, ulcerative colitis, and Crohn's disease. To identify genes expressed during methylprednisolone treatment against neurons of rats (PC12 cells), DNA microarray method was used. We have isolated 2 gene groups (up- or down-regulated genes) which are methylprednisolone differentially expressed in neurons. Lipocalin 3 is the gene most significantly increased among 772 up-regulated genes (more than 2 fold over-expression) and Aristaless 3 is the gene most dramatically decreased among 959 down-regulated genes (more than 2 fold down-expression). The gene increased expression of Fgb, Thbd, Cfi, F3, Kngl, Serpinel, C3, Tnfrsf4 and Il8rb are involved stress-response gene, and Nfkbia, Casp7, Pik3rl, I11b, Unc5a, Tgfb2, Kitl and Fgf15 are strongly associated with development. Cell cycle associated genes (Mcm6, Ccnb2, Plk1, Ccnd1, E2f1, Cdc2a, Tgfa, Dusp6, Id3) and cell proliferation associated genes (Ccl2, Tnfsf13, Csf2, Kit, Pim1, Nr3c1, Chrm4, Fosl1, Spp1) are down-regulated more than 2 times by methylprednisolone treatment. Among the genes described above, 4 up-regulated genes are confirmed those expression by RT-PCR. We found that methylprednisolone is related to expression of many genes associated with stress response, development, cell cycle, and cell proliferation by DNA microarray analysis. However, We think further experimental molecular studies will be needed to figure out the exact biological function of various genes described above and the physiological change of neuronal cells by methylprednisolone. The resulting data will give the one of the good clues for understanding of methylprednisolone under molecular level in the neurons.

  • PDF

Genenation of structural diversity in polyketides by combinatorial biosynthesis of polyketides: Part I. Generation of multiple bioactive macrolides by hybrid modular polyketide synthases in Streptomyces venezuelae, Part II. Production of novel rifamycins by combinatorial biosynthesis

  • Yoon, Yeo-Joon
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2002.10a
    • /
    • pp.18-25
    • /
    • 2002
  • The pikromycin biosynthetic system in Streptomyces venezuleae is unique for its ability to produce two groups of antibiotics that include the 12-membered ring macrolides methymycin and neomethymycin, and the 14-membered ring macrolides narbomycin and pikromycin. The metabolic pathway also contains two post polyketide-modification enzymes, a glycosyltransferase and P450 hydroxylase that have unusually broad substrate specificities. In order to explore further the substrate flexibility of these enzymes a series of hybrid polyketide synthases were constructed and their metabolic products characterized. The plasmid-based replacement of the multifunctional protein subunits of the pikromycin PKS in S. venezuelae by the corresponding subunits from heterologous modular PKSs resulted in recombinant strains that produce both 12- and 14-membered ring macrolactones with predicted structural alterations. In all cases, novel macrolactones were produced and further modified by the DesVII glycosyltransferase and PikC hydroxylase leading to biologically active macrolide structures. These results demonstrate that hybrid PKSs in S. venezuelae can produce a multiplicity of new macrolactones that are modified further by the highly flexible DesVII glycosyltransferase and PikC hydroxylase tailoring enzymes. This work demonstrates the unique capacity of the S. venezuelae pikromycin pathway to expand the toolbox of combinatorial biosynthesis and to accelerate the creation of novel biologically active natural products. The polyketide backbone of rifamycin B is assembled through successive condensation and ${\beta}$-carbonyl processing of the extender units by the modular rifamycin PKS. The eighth module, in the RifD protein, contains nonfunctional DH domain and functional KR domain, which specify the reduction of the ${\beta}$-carbonyl group resulting in the C-21 bydroxyl of rifamycin B. A four amino acid substitution and one amino acid deletion were introduced in the putative NADPH binding motif in the proposed KR domain encoded by rifD. This strategy of mutation was based on the amino acid sequences of the corresponding motif of the KR domain of module 3 in the RifA protein, which is believed dysfunctional, so as to introduce a minimum alteration and retain the reading frame intact, yet ensure loss of function. The resulting strain produces linear polyketides, from tetraketide to octaketide, which are also produced by a rifD disrupted mutant as a consequence of premature termination of polyketide assembly. Much of the structural diversity within the polyketide superfamily of natural products is due to the ability of PKSs to vary the reduction level of every other alternate carbon atom in the backbone. Thus, the ability to introduce heterologous reductive segments such as ketoreductase (KR), dehydratase (DH), and enoylreductase (ER) into modules that naturally lack these activities would increase the power of the combinatorial biosynthetic toolbox. The dehydratase domain of module 7 of the rifamycin PKS, which is predicted to be nonfunctional in view of the sequence of the apparent active site, was replaced with its functional homolog from module 7 of rapamycin-producing polyketide synthase. The resulting mutant strain behaved like a rifC disrupted mutant, i.e., it accumulated the heptaketide intermediate and its precursors. This result points out a major difficulty we have encountered with all the Amycolatopsis mediterranei strain containing hybrid polyketide synthases: all the engineered strains prepared so far accumulate a plethora of products derived from the polyketide chain assembly intermediates as major products instead of just analogs of rifamycin B or its ansamycin precursors.

  • PDF

Lung Adenocarcinoma Mutation Hotspot in Koreans: Oncogenic Mutation Potential of the TP53 P72R Single Nucleotide Polymorphism (한국인의 폐선암 돌연변이 핫스팟: TP53 P72R Single Nucleotide Polymorphism의 발암성 돌연변이 가능성)

  • Jae Ha BAEK;Kyu Bong CHO
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.2
    • /
    • pp.93-104
    • /
    • 2023
  • This study aimed to identify new markers that cause lung adenocarcinoma by analyzing mutation hotspots for the top five genes with high mutation frequency in lung adenocarcinoma in Koreans by next generation sequencing (NGS) analysis. The association between TP53 mutation types and patterns with smoking, a major cause of lung cancer, was examined. The clinicopathological characteristics of lung adenocarcinoma patients with TP53 P72R SNPs were analyzed. In Korean lung adenocarcinoma cases, regardless of the smoking status, the TP53 P72R SNP was the most frequently occurring mutational hotspot, in which the nucleotide base was transversed from C to G, and the amino acid was substituted from proline to arginine at codon 72 of TP53. An analysis of the clinicopathological characteristics of lung adenocarcinoma cases with TP53 P72R SNP revealed no significant correlation with the patient's age, gender, smoking status, and tumor differentiation, but a significant correlation with low stage (P-value =0.026). This study confirmed an increase in TP53 rather than EGFR, which was reported as the most frequent mutations in lung adenocarcinoma in Koreans through NGS. Among them, TP53 P72R SNP is the most frequent regardless of smoking status.

A whole genomic scan to detect selection signatures between Berkshire and Korean native pig breeds

  • Edea, Zewdu;Kim, Kwan-Suk
    • Journal of Animal Science and Technology
    • /
    • v.56 no.7
    • /
    • pp.23.1-23.7
    • /
    • 2014
  • Background: Scanning of the genome for selection signatures between breeds may play important role in understanding the underlie causes for observable phenotypic variations. The discovery of high density single nucleotide polymorphisms (SNPs) provide a useful starting point to perform genome-wide scan in pig populations in order to identify loci/candidate genes underlie phenotypic variation in pig breeds and facilitate genetic improvement programs. However, prior to this study genomic region under selection in commercially selected Berkshire and Korean native pig breeds has never been detected using high density SNP markers. To this end, we have genotyped 45 animals using Porcine SNP60 chip to detect selection signatures in the genome of the two breeds by using the $F_{ST}$ approach. Results: In the comparison of Berkshire and KNP breeds using the FDIST approach, a total of 1108 outlier loci (3.48%) were significantly different from zero at 99% confidence level with 870 of the outlier SNPs displaying high level of genetic differentiation ($F_{ST}{\geq}0.490$). The identified candidate genes were involved in a wide array of biological processes and molecular functions. Results revealed that 19 candidate genes were enriched in phosphate metabolism (GO: 0006796; ADCK1, ACYP1, CAMK2D, CDK13, CDK13, ERN1, GALK2, INPP1; MAK, MAP2K5, MAP3K1, MAPK14, P14KB, PIK3C3, PRKC1, PTPRK, RNASEL, THBS1, BRAF, VRK1). We have identified a set of candidate genes under selection and have known to be involved in growth, size and pork quality (CART, AGL, CF7L2, MAP2K5, DLK1, GLI3, CA3 and MC3R), ear morphology and size (HMGA2 and SOX5) stress response (ATF2, MSRB3, TMTC3 and SCAF8) and immune response (HCST and RYR1). Conclusions: Some of the genes may be used to facilitate genetic improvement programs. Our results also provide insights for better understanding of the process and influence of breed development on the pattern of genetic variations.

Genome-wide association analysis of nine reproduction and morphological traits in three goat breeds from Southern China

  • Xiaoyan, Sun;Jing, Jiang;Gaofu, Wang;Peng, Zhou;Jie, Li;Cancan, Chen;Liangjia, Liu;Nianfu, Li;Yuanyou, Xia;Hangxing, Ren
    • Animal Bioscience
    • /
    • v.36 no.2
    • /
    • pp.191-199
    • /
    • 2023
  • Objective: This study aimed to investigate the significant single nucleotide polymorphisms (SNPs) and genes associated with nine reproduction and morphological traits in three breed populations of Chinese goats. Methods: The genome-wide association of nine reproduction and morphological traits (litter size, nipple number, wattle, skin color, coat color, black dorsal line, beard, beard length, and hind leg hair) were analyzed in three Chinese native goat breeds (n = 336) using an Illumina Goat SNP50 Beadchip. Results: A total of 17 genome-wide or chromosome-wide significant SNPs associated with one reproduction trait (litter size) and six morphological traits (wattle, coat color, black dorsal line, beard, beard length, and hind leg hair) were identified in three Chinese native goat breeds, and the candidate genes were annotated. The significant SNPs and corresponding putative candidate genes for each trait are as follows: two SNPs located on chromosomes 6 (CSN3) and 24 (TCF4) for litter size trait; two SNPs located on chromosome 9 (KATNA1) and 1 (UBASH3A) for wattle trait; three SNPs located on chromosome 26 (SORCS3), 24 (DYM), and 20 (PDE4D) for coat color trait; two SNPs located on chromosome 18 (TCF25) and 15 (CLMP) for black dorsal line trait; four SNPs located on chromosome 8, 2 (PAX3), 5 (PIK3C2G), and 28 (PLA2G12B and OIT3) for beard trait; one SNP located on chromosome 18 (KCNG4) for beard length trait; three SNPs located on chromosome 17 (GLRB and GRIA2), 28 (PGBD5), and 4 for hind leg hair trait. In contrast, there were no SNPs identified for nipple number and skin color. Conclusion: The significant SNPs or genes identified in this study provided novel insights into the genetic mechanism underlying important reproduction and morphological traits of three local goat breeds in Southern China as well as further potential applications for breeding goats.