• Title/Summary/Keyword: PID tuning method

Search Result 292, Processing Time 0.019 seconds

The Sliding Mode Control with a Time Delay Estimation (SMCTE) for an SMA Actuator

  • Lee, Hyo-Jik;Yoon, Ji-Sup;Lee, Jung-Ju
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.5-10
    • /
    • 2005
  • We deal with the sliding mode control using the time delay estimation. The time delay estimation is able to weaken the need for obtaining a quantitative plant model analogous to the real plant so the sliding mode control with a time delay estimation (SMCTE) is very suitable for plant such as SMA actuators whose quantitative model is difficult to obtain. We have already studied the application of the time delay control (TDC) to SMA actuators in other literature. Based on the previous study on the TDC, we developed the gain tuning method for the SMCTE, which results were nearly the same as the TDC. With respect to the step response, the SMCTE proved its predominance in a comparison with other control schemes such as the PID control and the relay control. As well as the contribution of the above control methodology, the model identification for SMA actuators has also been studied. The dynamics for an SMA actuator was newly derived using the modified Liang's model. The derived dynamics showed a continuity at the change of the phase transformation process but the original Liang's model could not.

  • PDF

Design of Self-Tuning Fuzzy Logic Controllers using Genetic Algorithms (유전알고리즘을 이용한 자기동조 퍼지 제어기의 설계)

  • Suh, Jae-Kun;Kim, Tae-Eun;Kwon, Hyuk-Jin;Kim, Lark-Kyo;Nam, Moon-Hyon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1374-1376
    • /
    • 1996
  • In this paper We proposed a new method to generate fuzzy logic controllers through genetic algorithm(GA). In designing of fuzzy logic controllers encounters difficulties in the selection of optimized member-ship functions, gains and rule base, which is conventionally achieved by a tedious trial-and-error process. This paper develops genetic algorithms for automatic design of high performance fuzzy logic controllers which can overcome nonlinearities in many engineering control applications. The rule-base is coded in base-7 strings by generated from random function. Which can be presented in discrete fuzzy linguistic value, and using membership function with Gaussian curve. To verify the validity of this fuzzy logic controller it is compared with conventional fuzzy logic controller(FLC) and PID controller.

  • PDF