• 제목/요약/키워드: PID controller PID

검색결과 1,741건 처리시간 0.027초

A Fuzzy Self-Tuning PID Controller with a Derivative Filter for Power Control in Induction Heating Systems

  • Chakrabarti, Arijit;Chakraborty, Avijit;Sadhu, Pradip Kumar
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1577-1586
    • /
    • 2017
  • The Proportional-Integral-Derivative (PID) controller is still the most widespread control strategy in the industry. PID controllers have gained popularity due to their simplicity, better control performance and excellent robustness to uncertainties. This paper presents the optimal tuning of a PID controller for domestic induction heating systems with a series resonant inverter for controlling the induction heating power. The objective is to design a stable and superior control system by tuning the PID controller with a derivative filter (PIDF) through Fuzzy logic. The paper also compares the performance of the Fuzzy PIDF controller with that of a Ziegler-Nichols PID controller and a fine-tuned PID controller with a derivative filter. The system modeling and controllers are simulated in MATLAB/SIMULINK. The results obtained show the effectiveness and superiority of the proposed Fuzzy PID controller with a derivative filter.

Self-Tuning PID Controller Based on PLC

  • Phonphithak, A.;Pannil, P.;Suesut, T.;Masuchun, R.;Julsereewong, P.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.272-276
    • /
    • 2004
  • The conventional PID (Proportional-Integral-Derivative) control technique is widely used for the process control in many industries since it is simple in structure and provides the good response. Nowadays, this control technique has been developed on the Programmable Logic Controller (PLC) to use for the process control loop. However, using this technique is difficult when tuning the PID parameters ($K_p$, $T_i$ and $T_d$) to achieve the best response. Moreover, trial-and-error procedure along with the operator experiences are required to obtain the best results when tuning the PID controller parameters. This paper proposes the self-tuning PID controller based on PLC for the process control in the industries. The proposed self-tuning PID controller uses the PLC-based PID structures to control the process production. The proposed PID tuning utilizes the PLC to synthesize and analyze controller parameter as well as to tune for appropriate parameters using Dahlin method and extrapolation. Experimental results using a self-tuning PID controller to control temperature of the oven show that the controller developed is capable of controlling the process very effectively and provides a good response.

  • PDF

2-DOF PID Control for the Steam Temperature Control of Thermal Power Plant

  • Kim, Dong-Hwa;Hong, Won-Pyo;Jung, Chang-Gi;Lee, Seung-Hak
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2123-2125
    • /
    • 2001
  • In thermal power plant, the efficiency of a combined power plant with a gas turbine increases, exceeding 50%, while the efficiency of traditional steam turbine plants is approximately 35% to 40%. Up to the present time, the PID controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain without any experience, since the gain of the PID controller has to be manually tuned by trial and error procedures. This paper focuses on the neural network tuning of the 2-DOF PID controller with a separated 2-DOF parameter (NN-Tuning 2-DOF PID controller), for optimal control of the Gun-san gas turbine generating plant in Seoul. Korea. In order to attain optimal control, transfer function and operating data from start-up, running, and stop procedures of the Gun-san gas turbine have been acquired, and a designed controller has been applied to this system. The results of the NN-Tuning 2-DOF PID are compared with the PID controller and the conventional 2-DOF PID controller tuned by the Ziegler-Nichols method through experimentation. The experimental results of the NN-Tuning 2-DOF PID controller represent a more satisfactory response than those of the previously-mentioned two controller.

  • PDF

아핀 집합의 특성을 이용한 변형된 PID 제어기의 최적 동조 (Optimum Tuning of Modified PID Controller using Properties of the Affine Set)

  • 김창현;임동균;서병설
    • 전자공학회논문지SC
    • /
    • 제42권6호
    • /
    • pp.15-22
    • /
    • 2005
  • 본 논문에서는 PID 제어기와 PI-PD 제어기 사이의 관계를 분석하여 이 두 제어기의 affine 집합을 구성하는 PID 제어기의 변형된 형태인 PID-PD 제어기와 그 동조 방법을 새롭게 제안한다. 제안된 설계 방법은 PID와 PI-PD 제어기를 이용한 전체 폐루프 시스템인 시간 응답을 경계로 그 사이의 응답을 보이도록 설계할 수 있다. 그 동조 방법으로 특정한 가격함수를 선정하여 이를 최소화하는 최적 동조법을 적용하여 제어를 설계하였다. 제안된 제어기의 유용성을 사례 연구와 분석을 통해 검토했다.

PID 이득 동조를 위한 퍼지 스케줄링 (Fuzzy Scheduling for the PID Gain Tuning)

  • 신위재
    • 한국지능시스템학회논문지
    • /
    • 제15권1호
    • /
    • pp.120-125
    • /
    • 2005
  • 본 논문에서는 PID 제어기의 이득 동조를 위한 퍼지 제어기를 제안한다. 제안한 제어기는 PID 제어기의 크리스퍼 출력 오차를 그대로 사용하지 않는 전단 퍼지화기에서 추론단계는 갖지만 Rule Table은 갖지 않는 특징이 있으며, 출력 소속 함수에 두 변수의 관계와 범위를 이용 도식화된 영역에서 비퍼지화 시킨 비선형 출력값을 PID 계수에 부가하는 새로운 Fuzzy PID 제어기를 제안한다. 여기서 Kp, Kd 계수의 최대, 최소 범위를 설정하여 퍼지추론에 의해 새로운 Kp, Kd 계수론 구한다. Ki 계수는 Ziegler-Nichols 동조 규칙을 사용하여 구하였고, 제안한 제어기는 유압서보모터 제어시스템에 의해 실험하였으며 실험결과 양호한 제어특성을 통해 원하는 결과를 얻을 수 있었다.

유전 알고리즘을 이용한 전력계통의 부하주파수 제어를 위한 퍼지 전 보상 PID 제어기 설계 (Design of Fuzzy Precompensated PID Controller for Load Frequency Control of Power System using Genetic Algorithm)

  • 정형환;왕용필;이정필;정문규
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제49권2호
    • /
    • pp.62-69
    • /
    • 2000
  • In this paper, we design a GA-fuzzy precompensated PID controller for the load frequency control of two-area interconnected power system. Here, a fuzzy precompensated PID controller is designed as a fuzzy logic-based precompensation approach for PID controller. This scheme is easily implemented simply by adding a fuzzy precompensator to an existing PID controller. And we optimize the fuzzy precompensator with a genetic algorithm for complements the demerit such as the difficulty of the component selection of fuzzy controller, namely, scaling factor, membership function and control rules. Simulation results show that the proposed control technique is superior to a conventional PID control and a fuzzy precompensated PID control in dynamic responses about the load disturbances of power system and is convinced robustness reliableness in view of structure.

  • PDF

PID 제어기의 On-Line 퍼지 자동동조 (On-Line Fuzzy Auto Tuning for PID Controller)

  • 황형수;최정내;이원혁
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권2호
    • /
    • pp.55-61
    • /
    • 2000
  • In this paper, we proposed a new PID tuning algorithm by the fuzzy set theory to improve the performance of the PID controller. The new tuning algorithm for the PID controller has the initial value of parameter Kc, $\tau$I, $\tau$D by the Ziegler-Nichols formula using the ultimate gain and ultimate period from a relay tuning experiment. We get error and error change of plant output correspond to the initial value and new proportion gain(Kc) and integral time($\tau$I) from fuzzy tunner. This fuzzy tuning algorithm for PID controller considerably reduced overshoot and rise time compare to any other PID controller tuning algorithms. In real parametric uncertainty systems, the PID controller with Fuzzy auto-tuning give appreciable improvement in the performance. The significant properties of this algorithm is shown by simulation In this paper, we proposed a new PID algorithm by the fuzzy set theory to improve the performance of the PID controller.

  • PDF

A Combined Fuzzy -PID Controller

  • Jibril Jiya;Cheng Shao;Chai, Tian-You
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.465-468
    • /
    • 1998
  • In this paper, merits of both fuzzy and PID controllers are combined. The combined controller is designed such that the tuning of the PID controller is achieved by the basic fuzzy controller via its rule base. The proposed scheme avoids the tuning of PID parameters which is always a time consuming task, difficult to carry out and often poorly done. Computer simulations are made to demonstrate the satisfactory tracking performance of the combined fuzzy-PID controller.

  • PDF

퍼지 로직 동조기를 이용한 PID 제어기의 이득 조정 (Tuning gains of a PID controller using fuzzy logic-based tuners)

  • 이명원;권순학;이달해
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.184-187
    • /
    • 1996
  • In this paper, an algorithm for tuning gains of a PID controller is proposed. The proposed algorithm is composed of two stages. The first is a stage for Lyapunov function-based initial stabilization of an overall system and rough tuning gains of the PID controller. The other is that for fine tuning gains of the PID controller. All tunings are performed by using the well-known fuzzy logic-based tuner. The computer simulations are performed to show the validity of the proposed algorithm and results are presented.

  • PDF

전력시스템의 부하주파수 제어를 위한 IA-Fuzzy 전 보상 PID 제어기 설계 (Design of a IA-Fuzzy Precompensated PID Controller for Load Frequency Control of Power Systems)

  • 정형환;이정필;정문규;김창현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권4호
    • /
    • pp.415-424
    • /
    • 2002
  • In this paper, a robust fuzzy precompensated PID controller using immune algorithm for load frequency control of 2-area power system is proposed. Here, a fuzzy precompensated PID controller is designed as a fuzzy logic based precompensation approach for PID controller. This scheme is easily implemented by adding a fuzzy precompensator to an existing PID controller. We optimize the fuzzy precompensator with an immune algorithm for complementing the demerit such as the difficulty of the component selection of fuzzy controller, namely, scaling factor, membership function and fuzzy rules. Simulation results show that the proposed robust load frequency controller can achieve good performance even in the presence of generation rate constraints.