• Title/Summary/Keyword: PID controller PID

Search Result 1,741, Processing Time 0.022 seconds

A Numerical Study of New Vehicle Hydraulic Lift Activation by a Magneto-rheological Valve System for Precise Position Control (정밀 위치 제어를 위해 MR 밸브 시스템을 활용한 차량 유압 리프트에 대한 수치해석적 고찰)

  • Lee, TaeHoon;Park, Jhin-Ha;Choi, Seung-Bok;Shin, Cheol-Soo;Choi, Ji-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.28-35
    • /
    • 2017
  • Recently, conventional hydraulic car lift systems face the technological limitations due to a lack of height control. The demand for height controllability is required in many tasks such as wheel alignment, and requires compensation for the structural deformation of the lift caused by irregular load distribution. In order to resolve this limitation of the conventional car lift, in this work, a new type of a hydraulic vehicle lift using a magneto-rheological (MR) valve system is proposed and analyzed. Firstly, the dynamic model of vehicle lift is formulated to evaluate control performance; subsequently, an MR valve is designed to obtain the desired pressure drop required in the car lift. Next, a proportional-integral-derivative (PID) controller is formulated to achieve accurate control of the lifting height and then computer simulations are undertaken to show accurate height control performances of the proposed new car lift system.

Implementation of Quad-rotor Hovering Systems with Tracking (추적이 가능한 쿼드로터 호버링 시스템 구현)

  • Jung, Won-Ho;Chung, Jae-Pil
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.6
    • /
    • pp.574-579
    • /
    • 2016
  • Unlike general unmanned aerial vehicles, the quad-rotor is attracting the attention of many people because of simple structure and very useful value. However, as the interest in drones increases, the safety and location of vehicles are becoming more important provide against aviation safety accidents or lost accidents. Therefore, in this paper, we propose a tracking system that stabilizes the model with a simple controller by linearized modeling and grasp tilt angle data from various sensor through the filter. The developed tracking system transmits the position of the quad-rotor in flight to the computer and shows it through the route, so it can check the flight path and various information such as flight speed and altitude at the same time. Then the sensor used in the actual quad-rotor can not measure exact sensor data for disturbance and vibration. So we use sensor fusion of Kalman filter and Complementary filter to overcome this problem and the stability of the quad-rotor hovering is realized by PID control. Through simulation, various information such as the speed, position, and altitude of the quad-rotor were confirmed in real time.

Homing Loop Design for Missiles with Strapdown Seeker (스트랩다운 탐색기 기반 호밍루프 설계)

  • Hong, Ju-Hyeon;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.4
    • /
    • pp.317-325
    • /
    • 2014
  • For a missile with a strapdown seeker, line-of-sight rate for guidance is obtained by compensating the look angle rate from the strapdown seeker by the body angular rate from rate gyros. However, the body angular rate from rate gyros has different signal properties when it compared to the body angular rate implicitly included in the look angle rate. Typically this discrepancy causes instability of homing loop. In this paper, we propose a design method of homing loop where seeker delay is compulsively placed in the output signal of the rate gyros for accordance of both body rates. Also, PID control loop is considered for obtaining stabilized guidance command even though uncertainties of seeker delay is associated. The stability analysis for the linear homing loop before and after the compensation has been done. The stability and performance of the designed terminal homing loop is verified through full nonlinear 6-DOF simulations.

Active Control of a New Cargo Handling System Adapted for Time-Varying Tide (조수간만의 차를 고려한 새로운 하역 시스템의 능동 제어)

  • Hyoung-Seok Kim;Dar-Do Chung;Seung-Bok Choi;Jae-Wook Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.61-71
    • /
    • 1999
  • This paper resents a novel cargo system adapted for a sea port subjected to severe time-varying tide. The proposed system can perform loading or unloading by using a sort of hydraulic elevator associated with real-tim position control. As a preliminary phase, a small-sized model of the cargo system is designed and constructed. The model consists of three principal components ; container palette transfer(CPT) car, platform with lifting columns and cargo ship. The platform activated by the electro-rheological(ER) valve-cylinder is actively controlled to track the position of the cargo ship subjected to be varied due to the time-varying tide and wave motion. Following the derivation of the dynamic model for the platform and cargo ship motions, an appropriate control scheme incorporating time sequence and PID(proportional-integral-derivative) controller is formulated and implemented. Both the simulated and the measured control results are presented to demonstrate the effectiveness of the proposed cargo system.

  • PDF

Design of Embedded Electrical Power Control Unit for Personal Electrical Vehicle (1인승 전기차량의 임베디드 전동제어장치 설계)

  • Shin, Kyoo-Jae;Cha, Hyun-Rok
    • Journal of IKEEE
    • /
    • v.18 no.2
    • /
    • pp.282-290
    • /
    • 2014
  • This paper presents the design of embedded electrical power control unit for Personal Electrical Vehicle(PEV). The embedded unit is designed using PIC18F8720 processor, 16Mb flash ROM, 32Mb SDRAM and signal condition circuits. The proposed PEV consists of 4KW in-wheel Brushless DC Motor(BLDCM), 3 phase voltage source inverter with the $180^{\circ}$ conduction space vector PWM method, PID speed controller and the embedded control unit. The PEV has mechanical manufacture of inverse 3 wheel system, which is applied by the in-wheel BLDCM and steering mechanism with tilting function. Also, the performances of the proposed embedded electrical power control unit are verified through the lab experiment and road driving test of PEV.

A Study on the Image-based Automatic Flight Control of Mini Drone (미니드론의 영상기반 자동 비행 제어에 관한 연구)

  • Sun, Eun-Hey;Luat, Tran Huu;Kim, Dongyeon;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.6
    • /
    • pp.536-541
    • /
    • 2015
  • In this paper, we propose a the image-based automatic flight control system for the mini drone. Automatic flight system with a camera on the ceiling and markers on the floor and landing position is designed in an indoor environment. Images from the ceiling camera is used not only to recognize the makers and landing position but also to track the drone motion. PC sever identifies the location of the drone and sends control commands to the mini drone. Flight controller of the mini drone is designed using state-machine algorithm, PID control and way-point position control method. From the, The proposed automatic flight control system is verified through the experiments of the mini drone. We see that known makers in environment are recognized and the drone can follows the trajectories with the specific ㄱ, ㄷ and ㅁ shapes. Also, experimental results show that the drone can approach and correctly land on the target positions which are set at different height.

Development of Thermal Power Boiler System Simulator Using Neural Network Algorithm (신경망 알고리즘을 이용한 화력발전 보일러 시스템 시뮬레이터 개발)

  • Lee, Jung Hoon
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.3
    • /
    • pp.9-18
    • /
    • 2020
  • The development of a large-scale thermal power plant control simulator consists of water/steam systems, air/combustion systems, pulverizer systems and turbine/generator systems. Modeling is possible for all systems except mechanical turbines/generators. Currently, there have been attempts to develop neural network simulators for some systems of a boiler, but the development of simulator for the whole system has never been completed. In particular, autoTuning, one of the key technology developments of all power generation companies, is a technology that can be achieved only when modeling for all systems with high accuracy is completed. The simulation results show accuracy of 95 to 99% or more of the actual boiler system, so if the field PID controller is fitted to this simulator, it will be available for fault diagnosis or auto-tuning.

Experimental Comparison on Vibration Attenuation Performances of the Piezoelectric Mount in Same Geometric Constraints with the Rubber Mount (고무마운트와 동일한 형상 조건을 갖는 압전마운트의 진동저감 성능에 대한 실험적 비교 고찰)

  • Han, Young-Min
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.166-171
    • /
    • 2021
  • An active mount is devised in same geometric constraints with a conventional rubber mount. The proposed mount features the piezoelectric actuator which can be used to reduce the vibration at marine vessels or automotive vehicles. As a first step, a passive rubber mount is adopted and its dynamic characteristics are experimentally evaluated. Based on the geometry of the rubber mount, a rubber element for the active mount is manufactured and integrated with two piezostacks in series, in which the piezostack is operated as an inertial type of actuator. A conventional PID controller featured by the simple and easy implementation, is then designed to attenuate the non-resonant high frequency vibration transmitted from the base excitation. Finally, the control performances of a proposed active mount are evaluated in the wide frequency range and compared with those of the conventional rubber mount.

A study on the characteristics of intelligent sawing system for band saw (띠톱기계의 스마트 톱 절삭 시스템의 특성에 관한연구)

  • LUO, luPing;DING, zelin;DING, shengxia;JIANG, Ping;FAN, li;XIAO, leihua;PAN, bosong;An, Boyoung;Eum, Younseal;Han, Changsoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.195-204
    • /
    • 2020
  • To help solve the problems of how to set the optimal sawing force and the optimal controller parameters for different sawing conditions, a mathematical model of a proposed sawing system was established according to the principle of sawing force control. The conventional PID control method was then used for further research of the closed-loop control of the sawing force. Finally, through simulation and experimental research, the influence rule of the controller parameters and sawing load on the control performance and the relationships between the sawing width and controller parameters (proportion coefficient) and the sawing force setting value were obtained, from which a system scheme for intelligent sawing control of a band sawing machine was proposed. The research shows that the sawing efficiency of the intelligent sawing system was 18.1 (48%) higher than that of the original sawing system when sawing a grooved section sawing material, which verifies the good control effect of the proposed scheme.

The linear model analysis and Fuzzy controller design of the ship using the Nomoto model (Nomoto모델을 이용한 선박의 선형 모델 분석 및 퍼지제어기 설계)

  • Lim, Dae-Yeong;Kim, Young-Chul;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.821-828
    • /
    • 2011
  • This paper developed the algorithm for improving the performance the auto pilot in the autonomous vehicle system consisting of the Track keeping control, the Automatic steering, and the Automatic mooring control. The automatic steering is the control device that could save the voyage distance and cost of fuel by reducing the unnecessary burden of driving due to the continuous artificial navigation, and avoiding the route deviation. During the step of the ship autonomic navigation control, since the wind power or the tidal force could make the ship deviate from the fixed course, the automatic steering calculates the difference between actual sailing line and the set course to keep the ship sailing in the vicinity of intended course. first, we could get the transfer function for the modeling of ship according to the Nomoto model. Considering the maneuverability, we propose it as linear model with only 4 degree of freedoms to present the heading angle response to the input of rudder angle. In this paper, the model of ship is derived from the simplified Nomoto model. Since the proposed model considers the maximum angle and rudder rate of the ship auto pilot and also designs the Fuzzy controller based on existing PID controller, the performance of the steering machine is well improved.